232 research outputs found

    How professional training impacts teaching innovation among ideological and political teachers: the mediating and moderating role of basic psychological needs satisfaction

    Get PDF
    The aim of this study is to explore the impact of professional training on teaching innovation among senior high school ideological and political teachers. By introducing the concept of basic psychological needs satisfaction as a mediating factor, the study seeks to uncover the mechanisms and patterns that manifest in teaching innovation within the Chinese cultural context. To gather empirical data, a questionnaire survey was administered to a sample of 780 teachers in this specialized field. The results showed that providing more professional training is an effective way to enhance teaching innovation. Drawing on Self-Determination Theory, the satisfaction of basic psychological needs (competence, relatedness, and autonomy) was found to play an important role in this process. Competence need satisfaction and relatedness need satisfaction played a mediating role, while autonomy need satisfaction played a moderating role. Based on these findings, several recommendations are provided to support the professional training of senior high school ideological and political teachers and enhance their innovation, including providing personalized training programs, building a mentor system, and allowing greater autonomy in school management

    2,3,4-Tri-O-acetyl-β-d-xylosyl 2,4-dichloro­phenoxy­acetate

    Get PDF
    In the title compound, C19H20Cl2O10, the hexopyranosyl ring adopts a chair conformation. The four substituents are in equatorial positions. The mol­ecules arelinked via C—H⋯O contacts along the a axis

    Impact of sulfur content on thermo-capillarity and melt pool dynamics in laser powder bed fusion of 316L powders

    Get PDF
    Athree-dimensional numerical model is developed to investigate the influence of sulfur content on the transitions of thermo-capillarity and flow dynamics during laser powder bed fusion (LPBF) of 316L powders. The impacts of variations in sulfur contents on thermal behaviors involving heat transfer and solidification characteristics, thermo-capillarity transition, as well as the spatial and directional transitions in flow dynamics, are analyzed through mechanistic modeling techniques. It is observed that transient thermal behaviors, including melt pool profile, track morphology, and solidification processes, are significantly influenced by the contained sulfur concentration. High sulfur concentrations tend to result in finer microstructures and equiaxed grains. Through simulations, it is noted that the transition in the sign of temperature coefficient of surface tension (TCST) is more easily observable in low-sulfur level but disappears as the sulfur concentration is extremely low (0.0001%) With sulfur content increasing, a more homogenized velocity distribution is observed, accompanied with heightened flow complexity denoted by the emergence of additional branch flows and vortices. These findings offer valuable insights into the underlying physics of melt pool dynamics in the LPBF process and present a potential approach for process optimization

    Novel and predominant pathogen responsible for the enterovirus-associated encephalitis in eastern China

    Get PDF
    Enteroviruses (EV) have been increasingly identified as the causative agent for unknown etiological encephalitis in many parts of the world, but the long period surveillance for enterovirus-associated encephalitis (EAE) was not reported in China. From 2002-2012 in Zhejiang, Coxsackieviruses A9, B1, B2, B3, B4, B5; and echoviruses 3, 4, 6, 9, 14, 25, 30 were detected from the unknown etiological encephalitis cases, with coxsackievirus B4 been identified here for the first time. From 2002-2004 and 2010-2012, echovirus 30 was found to be the periodically predominant serotype for in the EAE. The molecular typing results showed that all the EV isolates from this study belonged to the human EV B (HEV B) family and were distributed in three clusters

    Formation Flight in Dense Environments

    Full text link
    Formation flight has a vast potential for aerial robot swarms in various applications. However, existing methods lack the capability to achieve fully autonomous large-scale formation flight in dense environments. To bridge the gap, we present a complete formation flight system that effectively integrates real-world constraints into aerial formation navigation. This paper proposes a differentiable graph-based metric to quantify the overall similarity error between formations. This metric is invariant to rotation, translation, and scaling, providing more freedom for formation coordination. We design a distributed trajectory optimization framework that considers formation similarity, obstacle avoidance, and dynamic feasibility. The optimization is decoupled to make large-scale formation flights computationally feasible. To improve the elasticity of formation navigation in highly constrained scenes, we present a swarm reorganization method which adaptively adjusts the formation parameters and task assignments by generating local navigation goals. A novel swarm agreement strategy called global-remap-local-replan and a formation-level path planner is proposed in this work to coordinate the swarm global planning and local trajectory optimizations efficiently. To validate the proposed method, we design comprehensive benchmarks and simulations with other cutting-edge works in terms of adaptability, predictability, elasticity, resilience, and efficiency. Finally, integrated with palm-sized swarm platforms with onboard computers and sensors, the proposed method demonstrates its efficiency and robustness by achieving the largest scale formation flight in dense outdoor environments.Comment: Submitted for IEEE Transactions on Robotic

    Histone ubiquitination-related gene CUL4B promotes lung adenocarcinoma progression and cisplatin resistance

    Get PDF
    Background: The role of the histone ubiquitination-related gene in the cisplatin resistance of lung adenocarcinoma (LUAD) remains an intricate subject.Methods: We accessed transcriptome data of both wild type and cisplatin-resistant cells from the GSE108214 dataset, and garnered transcriptome and clinical data of LUAD patients from The Cancer Genome Atlas (TCGA) database. Utilizing the R software, we analyzed these public datasets in depth. Real-time Quantitative PCR (qPCR) was used to detect the RNA level of CUL4B. Effect of CUL4B on cell proliferation was evaluated using CCK8 and colony formation assay. Effect of CUL4B on cell invasion was evaluated using transwell assay. Cisplatin sensitivity was evaluated by calculating IC50.Results: Our analysis shed light on the significance of the histone ubiquitination-related gene, CUL4B, in relation to cisplatin resistance and the overall survival rates of LUAD patients. Notably, CUL4B was found to be overexpressed in both lung cancer tissues and cells. Meanwhile, in vitro experiments indicated can CUL4B significantly promote the proliferation, invasion and migration of lung cancer cells. Furthermore, suppressing CUL4B expression led to a noticeable reduction in the IC50 value of cisplatin in lung cancer cells. A deep dive into biological enrichment analysis revealed that among patients exhibiting high CUL4B expression, there was a pronounced activation of the G2M checkpoint and the PI3K/AKT/mTOR signaling pathways. Immune microenvironment analysis has revealed that patients with elevated CUL4B expression may exhibit increased infiltration of M2 macrophages, coupled with a reduced infiltration of CD8+ T cells and activated NK cells. Notably, we observed higher CUL4B expression among those who responded positively to immunotherapy.Conclusion: These findings underscore the significance of CUL4B in the resistance to cisplatin in lung cancer, highlighting its potential as a therapeutic target

    New insights into the cortex-to-stele ratio show it to effectively indicate inter- and intraspecific function in the absorptive roots of temperate trees

    Get PDF
    The cortex-to-stele ratio (CSR), as it increases from thin- to thick-root species in angiosperms, is theorised to effectively reflect a compensation for the ‘lag’ of absorption behind transportation. But it is still not known if this compensatory effect exists in gymnosperm species or governs root structure and function within species. Here, anatomical, morphological, and tissue chemical traits of absorptive roots were measured in three temperate angiosperm and three gymnosperm species. Differences in the CSR and the above functional traits, as well as their intraspecific associations, were analyzed and then compared between angiosperms and gymnosperms. At the intraspecific level, the CSR decreased with increasing root order for all species. The expected functional indication of the CSR was consistent with decreases in specific root length (SRL) and N concentration and increases in the C to N ratio (C:N ratio) and the number of and total cross-sectional area of conduits with increasing root order, demonstrating that the CSR indicates the strength of absorption and transportation at the intraspecific level, but intraspecific changes are due to root development rather than the compensatory effect. These trends resulted in significant intraspecific associations between the CSR and SRL (R2 = 0.36 ~ 0.80), N concentration (R2 = 0.48 ~ 0.93), the C:N ratio (R2 = 0.47 ~ 0.91), and the number of (R2 = 0.21 ~ 0.78) and total cross-sectional area (R2 = 0.29 ~ 0.72) of conduits in each species (p< 0.05). The overall mean CSR of absorptive roots in angiosperms was four times greater than in gymnosperms, and in angiosperms, the CSR was significantly higher in thick- than in thin-rooted species, whereas in gymnosperms, the interspecific differences were not significant (p > 0.05). This suggests that the compensation for the lag of absorption via cortex thickness regulation was stronger in three angiosperm species than in three gymnosperm species. In addition, there was poor concordance between angiosperms and gymnosperms in the relationships between CSRs and anatomical, morphological, and tissue chemical traits. However, these gymnosperm species show a more stable intraspecific functional association compared to three angiosperm species. In general, absorptive root CSRs could manifest complex strategies in resource acquisition for trees at both intra- and interspecific levels

    SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation

    Full text link
    Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods still depend largely on a confined set of training datasets. In this work, we investigate scaling up EHPS towards the first generalist foundation model (dubbed SMPLer-X), with up to ViT-Huge as the backbone and training with up to 4.5M instances from diverse data sources. With big data and the large model, SMPLer-X exhibits strong performance across diverse test benchmarks and excellent transferability to even unseen environments. 1) For the data scaling, we perform a systematic investigation on 32 EHPS datasets, including a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. 2) For the model scaling, we take advantage of vision transformers to study the scaling law of model sizes in EHPS. Moreover, our finetuning strategy turn SMPLer-X into specialist models, allowing them to achieve further performance boosts. Notably, our foundation model SMPLer-X consistently delivers state-of-the-art results on seven benchmarks such as AGORA (107.2 mm NMVE), UBody (57.4 mm PVE), EgoBody (63.6 mm PVE), and EHF (62.3 mm PVE without finetuning). Homepage: https://caizhongang.github.io/projects/SMPLer-X/Comment: Homepage: https://caizhongang.github.io/projects/SMPLer-X

    Complex genetic architecture underlying the plasticity of maize agronomic traits

    Get PDF
    Phenotypic plasticity is the ability of a given genotype to produce multiple phenotypes in response to changing environmental conditions. Understanding the genetic basis of phenotypic plasticity and establishing a predictive model is highly relevant to future agriculture under a changing climate. Here we report findings on the genetic basis of phenotypic plasticity for 23 complex traits using a diverse maize population planted at five sites with distinct environmental conditions. We found that latitude -related environmental factors were the main drivers of across-site variation in flowering time traits but not in plant architecture or yield traits. For the 23 traits, we detected 109 quantitative trait loci (QTLs), 29 for mean values, 66 for plasticity, and 14 for both parameters, and 80% of the QTLs interacted with latitude. The effects of several QTLs changed in magnitude or sign, driving variation in phenotypic plasticity. We experimentally validated one plastic gene, ZmTPS14.1, whose effect was likely mediated by the compen-sation effect of ZmSPL6 from a downstream pathway. By integrating genetic diversity, environmental vari-ation, and their interaction into a joint model, we could provide site-specific predictions with increased accuracy by as much as 9.9%, 2.2%, and 2.6% for days to tassel, plant height, and ear weight, respectively. This study revealed a complex genetic architecture involving multiple alleles, pleiotropy, and genotype-by -environment interaction that underlies variation in the mean and plasticity of maize complex traits. It provides novel insights into the dynamic genetic architecture of agronomic traits in response to changing environments, paving a practical way toward precision agriculture
    corecore