35 research outputs found

    Momentum distribution and contacts of one-dimensional spinless Fermi gases with an attractive p-wave interaction

    Get PDF
    We present a rigorous study of momentum distribution and p-wave contacts of one dimensional (1D) spinless Fermi gases with an attractive p-wave interaction. Using the Bethe wave function, we analytically calculate the large-momentum tail of momentum distribution of the model. We show that the leading (∼1/p2\sim 1/p^{2}) and sub-leading terms (∼1/p4\sim 1/p^{4}) of the large-momentum tail are determined by two contacts C2C_2 and C4C_4, which we show, by explicit calculation, are related to the short-distance behaviour of the two-body correlation function and its derivatives. We show as one increases the 1D scattering length, the contact C2C_2 increases monotonically from zero while C4C_4 exhibits a peak for finite scattering length. In addition, we obtain analytic expressions for p-wave contacts at finite temperature from the thermodynamic Bethe ansatz equations in both weakly and strongly attractive regimes.Comment: 19 pages,2 figure

    Transition from Tonks-Girardeau gas to super-Tonks-Girardeau gas as an exact many-body dynamics problem

    Full text link
    We investigate transition of a one-dimensional interacting Bose gas from a strongly repulsive regime to a strongly attractive regime, where a stable highly excited state known as the super Tonks-Girardeau gas was experimentally realized very recently. By solving exact dynamics of the integrable Lieb-Liniger Bose gas, we demonstrate that such an excited gas state can be a very stable dynamic state. Furthermore we calculate the breathing mode of the super Tonks-Girardeau gas which is found to be in good agreement with experimental observation. Our results show that the highly excited super Tonks-Girardeau gas phase can be well understood from the fundamental theory of the solvable Bose gas.Comment: 4 pages, 4 figures, version to appear in Phys. Rev. A as a Rapid Communicatio

    Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases

    Full text link
    A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behaviour in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, we find that they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.Comment: 4 pages, 2 figure

    Quantum criticality of a one-dimensional Bose-Fermi mixture

    Full text link
    The one-dimensional interacting Bose-Fermi mixtures, exhibiting quantum phase transitions at zero temperature, are particularly valuable for the study of quantum critical phenomena. In the present paper, we analytically study quantum phase diagram, equation of state and quantum criticality of the Bose-Fermi mixture using the thermodynamic Bethe ansatz equations. We show that thermodynamical properties display universal scaling behaviour at quantum criticality. Furthermore, quantum criticality of the Bose-Fermi mixture in an harmonic trap is also studied within the local density approximation. We thus demonstrate that the phase diagram and critical properties of the bulk system provide insights into understanding universal features of many-body critical phenomena.Comment: 8 pages, 7 figure

    Quantum criticality and universal scaling of strongly attractive spin-imbalanced Fermi gases in a 1D harmonic trap

    Full text link
    We investigate thermodynamics and quantum criticality of strongly attractive Fermi gases confined in a one-dimensional (1D) harmonic trap. Finite temperature density profiles, entropy, compressibility and susceptibility of the trapped gas are studied using analytic results for the thermodynamics within the local density approximation. We demonstrate that current experiments are capable of measuring universal Tomonaga-Luttinger liquid physics and quantum criticality of 1D strongly interacting Fermi gases. The results provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Liao et al., Nature 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.Comment: 4 pages, 4 new figures, revised versio
    corecore