56 research outputs found

    LIO-GVM: an Accurate, Tightly-Coupled Lidar-Inertial Odometry with Gaussian Voxel Map

    Full text link
    This letter presents an accurate and robust Lidar Inertial Odometry framework. We fuse LiDAR scans with IMU data using a tightly-coupled iterative error state Kalman filter for robust and fast localization. To achieve robust correspondence matching, we represent the points as a set of Gaussian distributions and evaluate the divergence in variance for outlier rejection. Based on the fitted distributions, a new residual metric is proposed for the filter-based Lidar inertial odometry, which demonstrates an improvement from merely quantifying distance to incorporating variance disparity, further enriching the comprehensiveness and accuracy of the residual metric. Due to the strategic design of the residual metric, we propose a simple yet effective voxel-solely mapping scheme, which only necessities the maintenance of one centroid and one covariance matrix for each voxel. Experiments on different datasets demonstrate the robustness and accuracy of our framework for various data inputs and environments. To the benefit of the robotics society, we open source the code at https://github.com/Ji1Xingyu/lio_gvm

    CoBigICP: Robust and Precise Point Set Registration using Correntropy Metrics and Bidirectional Correspondence

    Full text link
    In this paper, we propose a novel probabilistic variant of iterative closest point (ICP) dubbed as CoBigICP. The method leverages both local geometrical information and global noise characteristics. Locally, the 3D structure of both target and source clouds are incorporated into the objective function through bidirectional correspondence. Globally, error metric of correntropy is introduced as noise model to resist outliers. Importantly, the close resemblance between normal-distributions transform (NDT) and correntropy is revealed. To ease the minimization step, an on-manifold parameterization of the special Euclidean group is proposed. Extensive experiments validate that CoBigICP outperforms several well-known and state-of-the-art methods.Comment: 6 pages, 4 figures. Accepted to IROS202

    Outram: One-shot Global Localization via Triangulated Scene Graph and Global Outlier Pruning

    Full text link
    One-shot LiDAR localization refers to the ability to estimate the robot pose from one single point cloud, which yields significant advantages in initialization and relocalization processes. In the point cloud domain, the topic has been extensively studied as a global descriptor retrieval (i.e., loop closure detection) and pose refinement (i.e., point cloud registration) problem both in isolation or combined. However, few have explicitly considered the relationship between candidate retrieval and correspondence generation in pose estimation, leaving them brittle to substructure ambiguities. To this end, we propose a hierarchical one-shot localization algorithm called Outram that leverages substructures of 3D scene graphs for locally consistent correspondence searching and global substructure-wise outlier pruning. Such a hierarchical process couples the feature retrieval and the correspondence extraction to resolve the substructure ambiguities by conducting a local-to-global consistency refinement. We demonstrate the capability of Outram in a variety of scenarios in multiple large-scale outdoor datasets. Our implementation is open-sourced: https://github.com/Pamphlett/Outram.Comment: 8 pages, 5 figure

    Blocking Wnt Secretion Reduces Growth of Hepatocellular Carcinoma Cell Lines Mostly Independent of β-Catenin Signaling

    Get PDF
    AbstractAberrant activation of Wnt/β-catenin signaling plays a key role in the onset and development of hepatocellular carcinomas (HCC), with about half of them acquiring mutations in either CTNNB1 or AXIN1. However, it remains unclear whether these mutations impose sufficient β-catenin signaling or require upstream Wnt ligand activation for sustaining optimal growth, as previously suggested for colorectal cancers. Using a panel of nine HCC cell lines, we show that siRNA-mediated knockdown of β-catenin impairs growth of all these lines. Blocking Wnt secretion, by either treatment with the IWP12 porcupine inhibitor or knockdown of WLS, reduces growth of most of the lines. Unexpectedly, interfering with Wnt secretion does not clearly affect the level of β-catenin signaling in the majority of lines, suggesting that other mechanisms underlie the growth-suppressive effect. However, IWP12 treatment did not induce autophagy or endoplasmic reticulum (ER) stress, which may have resulted from the accumulation of Wnt ligands within the ER. Similar results were observed for colorectal cancer cell lines used for comparison in various assays. These results suggest that most colorectal and liver cancers with mutations in components of the β-catenin degradation complex do not strongly rely on extracellular Wnt ligand exposure to support optimal growth. In addition, our results also suggest that blocking Wnt secretion may aid in tumor suppression through alternative routes currently unappreciated

    The Multi-Attribute Group Decision-Making Method Based on Interval Grey Trapezoid Fuzzy Linguistic Variables

    No full text
    With respect to multi-attribute group decision-making (MAGDM) problems, where attribute values take the form of interval grey trapezoid fuzzy linguistic variables (IGTFLVs) and the weights (including expert and attribute weight) are unknown, improved grey relational MAGDM methods are proposed. First, the concept of IGTFLV, the operational rules, the distance between IGTFLVs, and the projection formula between the two IGTFLV vectors are defined. Second, the expert weights are determined by using the maximum proximity method based on the projection values between the IGTFLV vectors. The attribute weights are determined by the maximum deviation method and the priorities of alternatives are determined by improved grey relational analysis. Finally, an example is given to prove the effectiveness of the proposed method and the flexibility of IGTFLV

    Dynamic Intuitionistic Fuzzy Multi-Attribute Group Decision-Making Based on Power Geometric Weighted Average Operator and Prediction Model

    No full text
    With respect to dynamic multi-attribute group decision-making (DMAGDM) problems, where attribute values take the form of intuitionistic fuzzy values (IFVs) and the weights (including expert, attribute and time weights) are unknown, the dynamic intuitionistic fuzzy power geometric weighted average (DIFPGWA) operator and the improved IFVs’ GM(1,1) prediction model (IFVs-GM(1,1)-PM) are proposed. First, the concept of IFVs, the operational rules, the distance between IFVs, and the comparing method of IFVs are defined. Second, the DIFPGWA operator and the improved IFVs-GM(1,1)-PM are defined in detail. Third, corresponding decision-making (D-M) steps are proposed. Three kinds of weights are given by the proposed determination method. Finally, an example is given to prove the effectiveness and superiority of the proposed decision-making method

    Session-Enhanced Graph Neural Network Recommendation Model (SE-GNNRM)

    No full text
    Session-based recommendation aims to predict anonymous user actions. Many existing session recommendation models do not fully consider the impact of similar sessions on recommendation performance. Graph neural networks can better capture the conversion relationship of items within a session, but some intra-session conversion relationships are not conducive to recommendation, which requires model learning more representative session embeddings. To solve these problems, an improved session-enhanced graph neural network recommendation model, namely SE-GNNRM, is proposed in this paper. In our model, the complex transitions relationship of items and more representative item features are captured through graph neural network and self-attention mechanism in the encoding stage. Then, the attention mechanism is employed to combine short-term and long-term preferences to construct a global session graph and capture similar session information by using a graph attention network fused with similarity. In order to prove the effectiveness of the constructed SE-GNNRM model, three public data sets are selected here. The experiment results show that the SE-GNNRM outperforms the existing baseline models and is an effective model for session-based recommendation
    • …
    corecore