16 research outputs found

    VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations

    Full text link
    Recent advancements in implicit neural representations have contributed to high-fidelity surface reconstruction and photorealistic novel view synthesis. However, the computational complexity inherent in these methodologies presents a substantial impediment, constraining the attainable frame rates and resolutions in practical applications. In response to this predicament, we propose VQ-NeRF, an effective and efficient pipeline for enhancing implicit neural representations via vector quantization. The essence of our method involves reducing the sampling space of NeRF to a lower resolution and subsequently reinstating it to the original size utilizing a pre-trained VAE decoder, thereby effectively mitigating the sampling time bottleneck encountered during rendering. Although the codebook furnishes representative features, reconstructing fine texture details of the scene remains challenging due to high compression rates. To overcome this constraint, we design an innovative multi-scale NeRF sampling scheme that concurrently optimizes the NeRF model at both compressed and original scales to enhance the network's ability to preserve fine details. Furthermore, we incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions. Extensive experiments demonstrate the effectiveness of our model in achieving the optimal trade-off between rendering quality and efficiency. Evaluation on the DTU, BlendMVS, and H3DS datasets confirms the superior performance of our approach.Comment: Submitted to the 38th Annual AAAI Conference on Artificial Intelligenc

    ShapeGPT: 3D Shape Generation with A Unified Multi-modal Language Model

    Full text link
    The advent of large language models, enabling flexibility through instruction-driven approaches, has revolutionized many traditional generative tasks, but large models for 3D data, particularly in comprehensively handling 3D shapes with other modalities, are still under-explored. By achieving instruction-based shape generations, versatile multimodal generative shape models can significantly benefit various fields like 3D virtual construction and network-aided design. In this work, we present ShapeGPT, a shape-included multi-modal framework to leverage strong pre-trained language models to address multiple shape-relevant tasks. Specifically, ShapeGPT employs a word-sentence-paragraph framework to discretize continuous shapes into shape words, further assembles these words for shape sentences, as well as integrates shape with instructional text for multi-modal paragraphs. To learn this shape-language model, we use a three-stage training scheme, including shape representation, multimodal alignment, and instruction-based generation, to align shape-language codebooks and learn the intricate correlations among these modalities. Extensive experiments demonstrate that ShapeGPT achieves comparable performance across shape-relevant tasks, including text-to-shape, shape-to-text, shape completion, and shape editing

    PDF: Point Diffusion Implicit Function for Large-scale Scene Neural Representation

    Full text link
    Recent advances in implicit neural representations have achieved impressive results by sampling and fusing individual points along sampling rays in the sampling space. However, due to the explosively growing sampling space, finely representing and synthesizing detailed textures remains a challenge for unbounded large-scale outdoor scenes. To alleviate the dilemma of using individual points to perceive the entire colossal space, we explore learning the surface distribution of the scene to provide structural priors and reduce the samplable space and propose a Point Diffusion implicit Function, PDF, for large-scale scene neural representation. The core of our method is a large-scale point cloud super-resolution diffusion module that enhances the sparse point cloud reconstructed from several training images into a dense point cloud as an explicit prior. Then in the rendering stage, only sampling points with prior points within the sampling radius are retained. That is, the sampling space is reduced from the unbounded space to the scene surface. Meanwhile, to fill in the background of the scene that cannot be provided by point clouds, the region sampling based on Mip-NeRF 360 is employed to model the background representation. Expensive experiments have demonstrated the effectiveness of our method for large-scale scene novel view synthesis, which outperforms relevant state-of-the-art baselines.Comment: Accepted to NeurIPS 202

    SDRM-LDP: A Recommendation Model Based on Local Differential Privacy

    No full text
    The development of 5G technology has driven the rise of e-commerce, social networking, and the Internet of Things. Under the high-speed transmission, the data volume increases, and the user demand also changes. Personalized customization has become the mainstream trend of network development. However, as the speed of the Internet increases, a series of problems also arise. The increase in data volume results in a reduction of bandwidth, a growth of the central processor’s pressure, and a higher risk of data leakage. A search system and a recommendation platform are the tools to improve people’s search efficiency. However, providing personalized recommendations to different users according to their needs is still an urgent problem. Simultaneously, the big data volume means that attackers can also get more information. They can use background knowledge and various reasoning methods to deduce the user’s private information using nonprivate items. In this paper, the solutions to safe and reliable recommendation services are the main problem explored. Based on this idea, this paper proposed short-term dynamic recommendation model based on local differential privacy (SDRM-LDP). This model uses a small amount of user information to construct short-term user preference behaviors and provides recommendations for users based on the similarity between items. We consider that an attacker uses nonprivate items to derive privacy items. Therefore, we randomly replace the original data in the same category. At the same time, the local differential privacy (LDP) is added to the privacy item query to make the private data available and protect the privacy information. In this paper, two real-world datasets, ML-100K and ML-10M, are used for experiments. Experimental results show that the results of SDRM-LDP are superior to other models

    KHGCN: Knowledge-Enhanced Recommendation with Hierarchical Graph Capsule Network

    No full text
    Knowledge graphs as external information has become one of the mainstream directions of current recommendation systems. Various knowledge-graph-representation methods have been proposed to promote the development of knowledge graphs in related fields. Knowledge-graph-embedding methods can learn entity information and complex relationships between the entities in knowledge graphs. Furthermore, recently proposed graph neural networks can learn higher-order representations of entities and relationships in knowledge graphs. Therefore, the complete presentation in the knowledge graph enriches the item information and alleviates the cold start of the recommendation process and too-sparse data. However, the knowledge graph’s entire entity and relation representation in personalized recommendation tasks will introduce unnecessary noise information for different users. To learn the entity-relationship presentation in the knowledge graph while effectively removing noise information, we innovatively propose a model named knowledge—enhanced hierarchical graph capsule network (KHGCN), which can extract node embeddings in graphs while learning the hierarchical structure of graphs. Our model eliminates noisy entities and relationship representations in the knowledge graph by the entity disentangling for the recommendation and introduces the attentive mechanism to strengthen the knowledge-graph aggregation. Our model learns the presentation of entity relationships by an original graph capsule network. The capsule neural networks represent the structured information between the entities more completely. We validate the proposed model on real-world datasets, and the validation results demonstrate the model’s effectiveness

    Probabilistic Matrix Factorization Recommendation Algorithm with User Trust Similarity

    No full text
    In this paper, we describe the formatting guidelines for Conference Proceedings. Whether the user similarity calculation is reasonable in the traditional collaborative filtering recommendation algorithm directly affects the result of the collaborative filtering recommendation algorithm. This paper proposes a probabilistic matrix factorization recommendation algorithm with user trust similarity which combines improved similarity of users’ trust and probability matrix factorization recommendation method. The results show that proposed algorithm could relieve user cold start issues and effectively reduce the error of recommendation

    A Decision Mixture Model-Based Method for Inshore Ship Detection Using High-Resolution Remote Sensing Images

    No full text
    With the rapid development of optical remote sensing satellites, ship detection and identification based on large-scale remote sensing images has become a significant maritime research topic. Compared with traditional ocean-going vessel detection, inshore ship detection has received increasing attention in harbor dynamic surveillance and maritime management. However, because the harbor environment is complex, gray information and texture features between docked ships and their connected dock regions are indistinguishable, most of the popular detection methods are limited by their calculation efficiency and detection accuracy. In this paper, a novel hierarchical method that combines an efficient candidate scanning strategy and an accurate candidate identification mixture model is presented for inshore ship detection in complex harbor areas. First, in the candidate region extraction phase, an omnidirectional intersected two-dimension scanning (OITDS) strategy is designed to rapidly extract candidate regions from the land-water segmented images. In the candidate region identification phase, a decision mixture model (DMM) is proposed to identify real ships from candidate objects. Specifically, to improve the robustness regarding the diversity of ships, a deformable part model (DPM) was employed to train a key part sub-model and a whole ship sub-model. Furthermore, to improve the identification accuracy, a surrounding correlation context sub-model is built. Finally, to increase the accuracy of candidate region identification, these three sub-models are integrated into the proposed DMM. Experiments were performed on numerous large-scale harbor remote sensing images, and the results showed that the proposed method has high detection accuracy and rapid computational efficiency

    Probabilistic Matrix Factorization Recommendation Algorithm with User Trust Similarity

    No full text
    In this paper, we describe the formatting guidelines for Conference Proceedings. Whether the user similarity calculation is reasonable in the traditional collaborative filtering recommendation algorithm directly affects the result of the collaborative filtering recommendation algorithm. This paper proposes a probabilistic matrix factorization recommendation algorithm with user trust similarity which combines improved similarity of users’ trust and probability matrix factorization recommendation method. The results show that proposed algorithm could relieve user cold start issues and effectively reduce the error of recommendation

    Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    No full text
    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster

    Locally Oriented Scene Complexity Analysis Real-Time Ocean Ship Detection from Optical Remote Sensing Images

    No full text
    Due to strong ocean waves, broken clouds, and extensive cloud cover interferences, ocean ship detection performs poorly when using optical remote sensing images. In addition, it is a challenge to detect small ships on medium resolution optical remote sensing that cover a large area. In this paper, in order to balance the requirements of real-time processing and high accuracy detection, we proposed a novel ship detection framework based on locally oriented scene complexity analysis. First, the proposed method can separate a full image into two types of local scenes (i.e., simple or complex local scenes). Next, simple local scenes would utilize the fast saliency model (FSM) to rapidly complete candidate extraction, and for complex local scenes, the ship feature clustering model (SFCM) will be applied to achieve refined detection against severe background interferences. The FSM considers a fusion enhancement image as an input of the pulse response analysis in the frequency domain to achieve rapid ship detection in simple local scenes. Next, the SFCM builds the descriptive model of the ship feature clustering algorithm to ensure the detection performance on complex local scenes. Extensive experiments on SPOT-5 and GF-2 ocean optical remote sensing images show that the proposed ship detection framework has better performance than the state-of-the-art methods, and it addresses the tricky problem of real-time ocean ship detection under strong waves, broken clouds, extensive cloud cover, and ship fleet interferences. Finally, the proposed ocean ship detection framework is demonstrated on an onboard processing hardware
    corecore