11,154 research outputs found

    Dealing with Interference in Distributed Large-scale MIMO Systems: A Statistical Approach

    Full text link
    This paper considers the problem of interference control through the use of second-order statistics in massive MIMO multi-cell networks. We consider both the cases of co-located massive arrays and large-scale distributed antenna settings. We are interested in characterizing the low-rankness of users' channel covariance matrices, as such a property can be exploited towards improved channel estimation (so-called pilot decontamination) as well as interference rejection via spatial filtering. In previous work, it was shown that massive MIMO channel covariance matrices exhibit a useful finite rank property that can be modeled via the angular spread of multipath at a MIMO uniform linear array. This paper extends this result to more general settings including certain non-uniform arrays, and more surprisingly, to two dimensional distributed large scale arrays. In particular our model exhibits the dependence of the signal subspace's richness on the scattering radius around the user terminal, through a closed form expression. The applications of the low-rankness covariance property to channel estimation's denoising and low-complexity interference filtering are highlighted.Comment: 12 pages, 11 figures, to appear in IEEE Journal of Selected Topics in Signal Processin

    A Coordinated Approach to Channel Estimation in Large-scale Multiple-antenna Systems

    Full text link
    This paper addresses the problem of channel estimation in multi-cell interference-limited cellular networks. We consider systems employing multiple antennas and are interested in both the finite and large-scale antenna number regimes (so-called "massive MIMO"). Such systems deal with the multi-cell interference by way of per-cell beamforming applied at each base station. Channel estimation in such networks, which is known to be hampered by the pilot contamination effect, constitute a major bottleneck for overall performance. We present a novel approach which tackles this problem by enabling a low-rate coordination between cells during the channel estimation phase itself. The coordination makes use of the additional second-order statistical information about the user channels, which are shown to offer a powerful way of discriminating across interfering users with even strongly correlated pilot sequences. Importantly, we demonstrate analytically that in the large-number-of-antennas regime, the pilot contamination effect is made to vanish completely under certain conditions on the channel covariance. Gains over the conventional channel estimation framework are confirmed by our simulations for even small antenna array sizes.Comment: 10 pages, 6 figures, to appear in IEEE Journal on Selected Areas in Communication

    Binding potentials for vapour nanobubbles on surfaces using density functional theory

    Full text link
    We calculate density profiles of a simple model fluid in contact with a planar surface using density functional theory (DFT), in particular for the case where there is a vapour layer intruding between the wall and the bulk liquid. We apply the method of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)] to calculate the density profiles for varying (specified) amounts of the vapour adsorbed at the wall. This is equivalent to varying the thickness hh of the vapour at the surface. From the resulting sequence of density profiles we calculate the thermodynamic grand potential as hh is varied and thereby determine the binding potential as a function of hh. The binding potential obtained via this coarse-graining approach allows us to determine the disjoining pressure in the film and also to predict the shape of vapour nano-bubbles on the surface. Our microscopic DFT based approach captures information from length scales much smaller than some commonly used models in continuum mechanics.Comment: 15 pages, 15 figure

    Recounting Dyons in N=4 String Theory

    Full text link
    A recently discovered relation between 4D and 5D black holes is used to derive weighted BPS black hole degeneracies for 4D N=4 string theory from the well-known 5D degeneracies. They are found to be given by the Fourier coefficients of the unique weight 10 automorphic form of the modular group Sp(2,Z). This result agrees exactly with a conjecture made some years ago by Dijkgraaf, Verlinde and Verlinde.Comment: 5 page

    The Effects of Product Ageing on Demand: The Case of Digital Cameras

    Get PDF
    The static differentiated product demand model when applied to products with rapid product turnover and declining prices, yields implausible results. One response is to explicitly model the inter-temporal choices of consumers but computational demands require restrictive assumptions on consumer heterogeneity and limits on the characteristics included in the model. We propose, instead, to supplement the static model with a control for the age that each product has been in the market. This approach is applied to the US digital camera market and we find we obtain more plausible estimates. Our results are consistent with inter-temporal price discrimination by firms. Furthermore, our results suggest that ignoring the effects of product ageing may result in substantially overestimated price elasticities and technological progress and underestimated price-cost markups.Discrete Choice; Demand Dynamics; Forward-Looking Behavior; Heterogeneous Preferences
    corecore