1,609 research outputs found

    Unsteady loads for coaxial rotors in forward flight computed using a vortex particle method

    Get PDF
    Recent advances in coaxial rotor design have shown benefits of this configuration. Nevertheless, issues related to rotor-head drag, aerodynamic performance, wake interference, and vibration should also be considered. Simulating the unsteady aerodynamic loads for a coaxial rotor, including the aerodynamic interactions between rotors and rotor blades, is an essential part of analysing their vibration characteristics. In this article, an unsteady aerodynamic analysis based on a vortex particle method is presented. In this method, a reversed-flow model for the retreating side of the coaxial rotor is proposed based on an unsteady panel technique. To account for reversed flow, shedding a vortex from the leading edge is used rather than from the trailing edge. Moreover, vortex-blade aerodynamic interactions are accounted for. The model considers the unsteady pressure term induced on a blade by tip vortices of other blades, and thus accounts for the aerodynamic interaction between the rotors and its contribution to the unsteady airloads. Coupling the reversed-flow model and the vortex-blade aerodynamic interaction model with the viscous vortex-particle method is used to simulate the complex wake of the coaxial rotor. The unsteady aerodynamic loads on the X2 coaxial rotor are simulated in forward flight, and compared with the results of PRASADUM (Parallelized Rotorcraft Analysis for Simulation And Design, developed at the University of Maryland) and CFD/CSD computations with the OVERFLOW and the CREATE-AV Helios tools. The results of the present method agree with the results of the CFD/CSD method, and compare to it better than the PRASADUM solutions. Furthermore, the influence of the aerodynamic interaction between the coaxial rotors on the unsteady airloads, frequency, wake structure, induced flow, and force distributions are analysed. Additionally, the results are also compared against computations for a single-rotor case, simulated at similar conditions as the coaxial rotor. It is shown that the effect of tip vortex interaction plays a significant role in unsteady airloads of coaxial rotors at low speeds, while the rotor blade passing effect is obviously strengthened at high-speed

    Simulation of Unsteady Aerdynamic Load for Rigid Coaxial Rotor in Forward Flight with Vortex Particle Method

    Get PDF
    Co-axial rotor systems are frequently used for high-speed helicopters. Nevertheless, issues related to rotor-head drag, aerodynamic performance and vibration should also be considered. Simulating the unsteady aerodynamic loads for a rigid coaxial rotor, including the aerodynamic interactions between rotors and rotor blades, is an essential part of analyzing their vibration characteristics. In this paper, an unsteady aerodynamic analysis based on the vortex-lattice method is presented. In this method, a reversed flow model on the retreating side of the coaxial rotor is proposed based on the unsteady panel method. To account for reversed flow, shedding a vortex from the leading-edge is used rather than from the trailing-edge. Moreover, vortex-blade aerodynamic interactions are modelled. The model considers the unsteady pressure term induced on a blade by tip vortices of other blades, and thus accounts for the aerodynamic interaction between the rotors and its contribution to the unsteady airloads. Coupling the reversed flow model and the vortex-blade aerodynamic interaction model with a viscous vortex particle method is used to simulate the complex wake of the coaxial rotor, closing the loop in modelling aerodynamic interactions of coaxial rotors. Following this, the unsteady aerodynamic loads on the X2 coaxial rotor are simulated in forward flight, and compared with the results of PRASADUM (Parallelized Rotorcraft Analysis for Simulation And Design, developed at the University of Maryland) and CFD/CSD computations with the OVERFLOW and the CREATE-AV Helios tools. The results of the present method agree with the results of the CFD/CSD method, and compare better than the PRASADUM solutions. Furthermore, the influence of the aerodynamic interaction between the coaxial rotors on the unsteady airloads, frequency, wake structure, induced flow and force distributions are analyzed. Additionally, the results are also compared against computation for a single rotor case, simulated at similar conditions as the coaxial rotor. It is shown that the effect of tip vortex interaction plays a significant role in unsteady airloads of coaxial rotors at low-speeds, while the rotor blade passing effect is obvious strengthened at high-speed

    DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization

    Full text link
    Neural network-based Combinatorial Optimization (CO) methods have shown promising results in solving various NP-complete (NPC) problems without relying on hand-crafted domain knowledge. This paper broadens the current scope of neural solvers for NPC problems by introducing a new graph-based diffusion framework, namely DIFUSCO. Our framework casts NPC problems as discrete {0, 1}-vector optimization problems and leverages graph-based denoising diffusion models to generate high-quality solutions. We investigate two types of diffusion models with Gaussian and Bernoulli noise, respectively, and devise an effective inference schedule to enhance the solution quality. We evaluate our methods on two well-studied NPC combinatorial optimization problems: Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS). Experimental results show that DIFUSCO strongly outperforms the previous state-of-the-art neural solvers, improving the performance gap between ground-truth and neural solvers from 1.76% to 0.46% on TSP-500, from 2.46% to 1.17% on TSP-1000, and from 3.19% to 2.58% on TSP10000. For the MIS problem, DIFUSCO outperforms the previous state-of-the-art neural solver on the challenging SATLIB benchmark. Our code is available at "https://github.com/Edward-Sun/DIFUSCO"
    • …
    corecore