7 research outputs found

    Improvement of bone mineral density after enzyme replacement therapy in Chinese late-onset Pompe disease patients

    No full text
    Abstract Objective Late-onset Pompe disease (LOPD) is a lysosomal storage disease resulted from deficiency of the enzyme acid α-glucosidase. Patients usually develop a limb-girdle pattern of myopathy and respiratory impairment, and enzyme replacement therapy (ERT) is the only specific treatment available. Recently, LOPD has been associated with low bone mineral density (BMD), but the effect of ERT on BMD is inconclusive. In this report we described our early observations on the change of BMD after ERT in Chinese LOPD patients. Results We studied four Chinese LOPD patients with different severities of myopathy. All were underweight, and three had osteoporosis at baseline. We found significant weight gain in three patients after ERT and all four patients showed improvement in BMD. The biggest improvement, 84.4% increase in BMD, was seen in a lady with the most prominent weight recovery. Our results suggest that ERT improves BMD in Chinese LOPD and weight gain could be a major contributor to this effect

    Epigenetic Silencing of <i>PTEN</i> and Epi-Transcriptional Silencing of <i>MDM2</i> Underlied Progression to Secondary Acute Myeloid Leukemia in Myelodysplastic Syndrome Treated with Hypomethylating Agents

    No full text
    In myelodysplastic syndrome (MDS), resistance to hypomethylating agents (HMA) portends a poor prognosis, underscoring the importance of understanding the molecular mechanisms leading to HMA-resistance. In this study, P39 and Kasumi-1 cells and their azacitidine-resistant and decitabine-resistant sublines were evaluated comparatively with transcriptomic and methylomic analyses. Expression profiling and genome-wide methylation microarray showed downregulation of PTEN associated with DNA hypermethylation in P39 cell lines resistant to azacitidine and decitabine. This pattern of PTEN dysregulation was also confirmed in a cohort of patients failing treatment with HMA. DNA hypomethylation of MDM2 was detected with downregulation of MDM2 in HMA resistant cell lines. Long-read sequencing revealed significant RNA hypomethylation of MDM2 resulting in alternative splicing and production of a truncated MDM2 transcript in azacitidine-resistant P39 cells. The expression of this MDM2 truncated transcript was also significantly increased in HMA-resistant patients compared with HMA-responsive patients. In conclusion, epigenetic and epi-transcriptomic dysregulation of PTEN and MDM2 were associated with resistance to hypomethylating agents

    Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays

    No full text
    Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation
    corecore