2,528 research outputs found

    Instantonic approach to triple well potential

    Get PDF
    By using a usual instanton method we obtain the energy splitting due to quantum tunneling through the triple well barrier. It is shown that the term related to the midpoint of the energy splitting in propagator is quite different from that of double well case, in that it is proportional to the algebraic average of the frequencies of the left and central wells.Comment: Revtex, 11 pages, Included one eps figur

    Large enhancement of the thermopower in Nax_xCoO2_2 at high Na doping

    Full text link
    Research on the oxide perovskites has uncovered electronic properties that are strikingly enhanced compared with those in conventional metals. Examples are the high critical temperatures of the cuprate superconductors and the colossal magnetoresistance in the manganites. The conducting layered cobaltate NaxCoO2\rm Na_xCoO_2 displays several interesting electronic phases as xx is varied including water-induced superconductivity and an insulating state that is destroyed by field. Initial measurements showed that, in the as-grown composition, NaxCoO2\rm Na_xCoO_2 displays moderately large thermopower SS and conductivity σ\sigma. However, the prospects for thermoelectric cooling applications faded when the figure of merit ZZ was found to be small at this composition (0.6<x<<x<0.7). Here we report that, in the poorly-explored high-doping region x>x>0.75, SS undergoes an even steeper enhancement. At the critical doping xp∼x_p\sim 0.85, ZZ (at 80 K) reaches values ∼\sim40 times larger than in the as-grown crystals. We discuss prospects for low-temperature thermoelectric applications.Comment: 6 pages, 7 figure

    The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong

    Get PDF
    The physical, chemical and bioreactivity characteristics of fine particulate matter (PM2.5) collected near (<1 km) two landfill sites and downwind urban sites were investigated. The PM2.5 concentrations were significantly higher in winter than summer. Diurnal variations of PM2.5 were recorded at both landfill sites. Soot aggregate particles were identified near the landfill sites, which indicated that combustion pollution due to landfill activities was a significant source. High correlation coefficients (r) implied several inorganic elements and water-soluble inorganic ions (vanadium (V), copper (Cu), chloride (Cl−), nitrate (NO3−), sodium (Na) and potassium (K)) were positively associated with wind flow from the landfill sites. Nevertheless, no significant correlations were also identified between these components against DNA damage. Significant associations were observed between DNA damage and some heavy metals such as cadmium (Cd) and lead (Pb), and total Polycyclic Aromatic Hydrocarbons (PAHs) during the summer. The insignificant associations of DNA damage under increased wind frequency from landfills suggested that the PM2.5 loading from sources such as regional sources was possibly an important contributing factor for DNA damage. This outcome warrants the further development of effective and source-specific landfill management regulations for particulate matter production control to the city
    • …
    corecore