150 research outputs found
The Phoenix Drone: An Open-Source Dual-Rotor Tail-Sitter Platform for Research and Education
In this paper, we introduce the Phoenix drone: the first completely
open-source tail-sitter micro aerial vehicle (MAV) platform. The vehicle has a
highly versatile, dual-rotor design and is engineered to be low-cost and easily
extensible/modifiable. Our open-source release includes all of the design
documents, software resources, and simulation tools needed to build and fly a
high-performance tail-sitter for research and educational purposes. The drone
has been developed for precision flight with a high degree of control
authority. Our design methodology included extensive testing and
characterization of the aerodynamic properties of the vehicle. The platform
incorporates many off-the-shelf components and 3D-printed parts, in order to
keep the cost down. Nonetheless, the paper includes results from flight trials
which demonstrate that the vehicle is capable of very stable hovering and
accurate trajectory tracking. Our hope is that the open-source Phoenix
reference design will be useful to both researchers and educators. In
particular, the details in this paper and the available open-source materials
should enable learners to gain an understanding of aerodynamics, flight
control, state estimation, software design, and simulation, while experimenting
with a unique aerial robot.Comment: In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA'19), Montreal, Canada, May 20-24, 201
Existence of Rotating Magnetic Stars
We consider a star as a compressible fluid subject to gravitational and
magnetic forces. This leads to an Euler-Poisson system coupled to a magnetic
field, which may be regarded as an MHD model together with gravity. The star
executes steadily rotating motion about a fixed axis. We prove, for the first
time, the existence of such stars provided that the rotation speed and the
magnetic field are sufficiently small
- …