845 research outputs found
Road Crack Detection Using Deep Convolutional Neural Network and Adaptive Thresholding
Crack is one of the most common road distresses which may pose road safety
hazards. Generally, crack detection is performed by either certified inspectors
or structural engineers. This task is, however, time-consuming, subjective and
labor-intensive. In this paper, we propose a novel road crack detection
algorithm based on deep learning and adaptive image segmentation. Firstly, a
deep convolutional neural network is trained to determine whether an image
contains cracks or not. The images containing cracks are then smoothed using
bilateral filtering, which greatly minimizes the number of noisy pixels.
Finally, we utilize an adaptive thresholding method to extract the cracks from
road surface. The experimental results illustrate that our network can classify
images with an accuracy of 99.92%, and the cracks can be successfully extracted
from the images using our proposed thresholding algorithm.Comment: 6 pages, 8 figures, 2019 IEEE Intelligent Vehicles Symposiu
- …