757 research outputs found
Recent Advances of Local Mechanisms in Computer Vision: A Survey and Outlook of Recent Work
Inspired by the fact that human brains can emphasize discriminative parts of
the input and suppress irrelevant ones, substantial local mechanisms have been
designed to boost the development of computer vision. They can not only focus
on target parts to learn discriminative local representations, but also process
information selectively to improve the efficiency. In terms of application
scenarios and paradigms, local mechanisms have different characteristics. In
this survey, we provide a systematic review of local mechanisms for various
computer vision tasks and approaches, including fine-grained visual
recognition, person re-identification, few-/zero-shot learning, multi-modal
learning, self-supervised learning, Vision Transformers, and so on.
Categorization of local mechanisms in each field is summarized. Then,
advantages and disadvantages for every category are analyzed deeply, leaving
room for exploration. Finally, future research directions about local
mechanisms have also been discussed that may benefit future works. To the best
our knowledge, this is the first survey about local mechanisms on computer
vision. We hope that this survey can shed light on future research in the
computer vision field
Finger Vein Recognition Based on (2D)2 PCA and Metric Learning
Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. In this paper, (2D)2 PCA is applied to extract features of finger veins, based on which a new recognition method is proposed in conjunction with metric learning. It learns a KNN classifier for each individual, which is different from the traditional methods where a fixed threshold is employed for all individuals. Besides, the SMOTE technology is adopted to solve the class-imbalance problem. Our experiments show that the proposed method is effective by achieving a recognition rate of 99.17%
Topological Structure Learning for Weakly-Supervised Out-of-Distribution Detection
Out-of-distribution (OOD) detection is the key to deploying models safely in
the open world. For OOD detection, collecting sufficient in-distribution (ID)
labeled data is usually more time-consuming and costly than unlabeled data.
When ID labeled data is limited, the previous OOD detection methods are no
longer superior due to their high dependence on the amount of ID labeled data.
Based on limited ID labeled data and sufficient unlabeled data, we define a new
setting called Weakly-Supervised Out-of-Distribution Detection (WSOOD). To
solve the new problem, we propose an effective method called Topological
Structure Learning (TSL). Firstly, TSL uses a contrastive learning method to
build the initial topological structure space for ID and OOD data. Secondly,
TSL mines effective topological connections in the initial topological space.
Finally, based on limited ID labeled data and mined topological connections,
TSL reconstructs the topological structure in a new topological space to
increase the separability of ID and OOD instances. Extensive studies on several
representative datasets show that TSL remarkably outperforms the
state-of-the-art, verifying the validity and robustness of our method in the
new setting of WSOOD
A maximal clique based multiobjective evolutionary algorithm for overlapping community detection
Detecting community structure has become one im-portant technique for studying complex networks. Although many community detection algorithms have been proposed, most of them focus on separated communities, where each node can be-long to only one community. However, in many real-world net-works, communities are often overlapped with each other. De-veloping overlapping community detection algorithms thus be-comes necessary. Along this avenue, this paper proposes a maxi-mal clique based multiobjective evolutionary algorithm for over-lapping community detection. In this algorithm, a new represen-tation scheme based on the introduced maximal-clique graph is presented. Since the maximal-clique graph is defined by using a set of maximal cliques of original graph as nodes and two maximal cliques are allowed to share the same nodes of the original graph, overlap is an intrinsic property of the maximal-clique graph. Attributing to this property, the new representation scheme al-lows multiobjective evolutionary algorithms to handle the over-lapping community detection problem in a way similar to that of the separated community detection, such that the optimization problems are simplified. As a result, the proposed algorithm could detect overlapping community structure with higher partition accuracy and lower computational cost when compared with the existing ones. The experiments on both synthetic and real-world networks validate the effectiveness and efficiency of the proposed algorithm
-Means Based Fingerprint Segmentation with Sensor Interoperability
A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint segmentation algorithms, which refers to the algorithm's ability to adapt to the raw fingerprints obtained from different sensors. We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a k-means based segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the k-means algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean, and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated by experiments performed on a number of fingerprint databases which are obtained from various sensors
A New Multistage Medical Segmentation Method Based on Superpixel and Fuzzy Clustering
The medical image segmentation is the key approach of image processing for brain MRI images. However, due to the visual complex appearance of image structures and the imaging characteristic, it is still challenging to automatically segment brain MRI image. A new multi-stage segmentation method based on superpixel and fuzzy clustering (MSFCM) is proposed to achieve the good brain MRI segmentation results. The MSFCM utilizes the superpixels as the clustering objects instead of pixels, and it can increase the clustering granularity and overcome the influence of noise and bias effectively. In the first stage, the MRI image is parsed into several atomic areas, namely, superpixels, and a further parsing step is adopted for the areas with bigger gray variance over setting threshold. Subsequently, designed fuzzy clustering is carried out to the fuzzy membership of each superpixel, and an iterative broadcast method based on the Butterworth function is used to redefine their classifications. Finally, the segmented image is achieved by merging the superpixels which have the same classification label. The simulated brain database from BrainWeb site is used in the experiments, and the experimental results demonstrate that MSFCM method outperforms the traditional FCM algorithm in terms of segmentation accuracy and stability for MRI image
- ā¦