81 research outputs found
Structural Characterization and Antioxidant Activity of Walnut Peptides
This study prepared and structurally characterized peptides with different molecular masses from walnut meal protein by enzymatic hydrolysis with a mixture of two proteases followed by ultrafiltration, and it also explored the antioxidant activities of walnut peptides and their protective effects on oxidative damage in HepG2 cells. The results showed that the antioxidant activity of walnut protein hydrolysate (WPH) with molecular mass < 1 kDa was the strongest, with half-maximal inhibitory concentration (IC50) of 11.47, 35.67 and 49.72 mg/mL for hydroxyl radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation scavenging capacity, respectively. Moreover, the < 1 kDa walnut peptide fraction could reduce the reactive oxygen species (ROS) content and increase the superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GSH-Rx) and glutathione peroxidase (GSH-Px) activity in HepG2 cells. The walnut peptide was irregular in shape and had a smooth surface and dense structure with numerous rough patterns and pores. The walnut peptide had a maximum absorption peak at 225 nm wavelength. The most abundant secondary structures of the walnut peptide were random coil (36.5%) and β-sheet (36.6%). These results indicate that the < 1 kDa walnut peptide has a protective effect against oxidative damage in HepG2 cells
Effect of lidocaine pumped through hepatic artery to relieve pain of hepatic artery infusion chemotherapy
BackgroundThis study aims to explore the analgesic effect of lidocaine administered through the hepatic artery during hepatic artery infusion chemotherapy (HAIC) for hepatocellular carcinoma (HCC).MethodsA total of 45 HCC patients were randomly divided into a study group and a control group. Both groups received oxaliplatin (OXA) based FOLFOX protocol via electronic infusion pump. The study group was continuously infused with 100 mg of lidocaine during HAIC, while 5% glucose solution was infused in the same way as described above. Changes in vital signs, visual analogue score (VAS) and general comfort score (GCQ scale) were recorded before surgery (Time point 0), at the end of infusion (Time point 01), 1 h after HAIC (Time point 02), 3 h after HAIC (Time point 03) and 6 h after HAIC (Time point 04).ResultsAt each point of time from Time point 0 through Time point 04, the differences in MAP, RR and SPO2 between the two groups were not statistically significant (P > 0.05). At each point of time from Time point 01 through Time point 04, the mean VAS scores in the study group were smaller and GCQ scores were higher than those in the control group, and the differences were both statistically significant (P < 0.05).ConclusionsLidocaine infusion through the hepatic artery during HAIC effectively reduces intraoperative and postoperative pain and improves patient satisfaction with pain management, making it a valuable technique for clinical practice
Guideline adherence of β-blocker initiating dose and its consequence in hospitalized patients with heart failure with reduced ejection fraction
Background: We aim to investigate the guideline adherence of β-blocker (BB) initiating dose in Chinese hospitalized patients with heart failure with reduced ejection fraction (HFrEF) and whether the adherence affected the in-hospital outcomes.Methods: This was a retrospective study of patients hospitalized with HFrEF who had initiated BBs during their hospitalization. We defined adherence to clinical practice guidelines as initiating BB with standard dose and non-adherence to guidelines if otherwise, and examined the association between adherence to guidelines and in-hospital BB-related adverse events. Subgroup analyses based on sex, age, coronary heart disease, and hypertension were performed.Results: Among 1,104 patients with HFrEF initiating BBs during hospitalization (median length of hospitalization, 12 days), 304 (27.5%) patients received BB with non-adherent initiating dose. This non-adherence was related to a higher risk (hazard ratio [95% confidence interval]) of BB dose reduction or withdrawal (1.78 [1.42 to 2.22], P < 0.001), but not significantly associated with risks of profound bradycardia, hypotension, cardiogenic shock requiring intravenous inotropes, and severe bronchospasm requiring intravenous steroid during hospitalization.Conclusion: This study identified that over a fourth of patients had received BBs with an initiating dose that was not adherent to guidelines in Chinese hospitalized patients with HFrEF, and this non-adherence was associated with BB dose reduction or withdrawal during hospitalization
Glycated Haemoglobin A1c Variability Score Elicits Kidney Function Decline in Chinese People Living with Type 2 Diabetes
Our aim was to investigate the association of glycated haemoglobin A1c (HbA1c) variability score (HVS) with estimated glomerular filtration rate (eGFR) slope in Chinese adults living with type 2 diabetes. This cohort study included adults with type 2 diabetes attending outpatient clinics between 2011 and 2019 from a large electronic medical record-based database of diabetes in China (WECODe). We estimated the individual-level visit-to-visit HbA1c variability using HVS, a proportion of changes in HbA1c of ≥0.5% (5.5 mmol/mol). We estimated the odds of people experiencing a rapid eGFR annual decline using a logistic regression and differences across HVS categories in the mean eGFR slope using a mixed-effect model. The analysis involved 2397 individuals and a median follow-up of 4.7 years. Compared with people with HVS ≤ 20%, those with HVS of 60% to 80% had 11% higher odds of experiencing rapid eGFR annual decline, with an extra eGFR decline of 0.93 mL/min/1.73 m(2) per year on average; those with HVS > 80% showed 26% higher odds of experiencing a rapid eGFR annual decline, with an extra decline of 1.83 mL/min/1.73 m(2) per year on average. Chinese adults with type 2 diabetes and HVS > 60% could experience a more rapid eGFR decline
Tuberous Sclerosis Complex With Multiple Organ Tumors: Case Report and Literature Review
Pancreatic neuroendocrine neoplasms (PNEN) are tumors that originate from neuroendocrine cells. Only about 1% patients are related to mutation of tuberous sclerosis complex gene. Here, we reported a rare case with involvement of multiple organs and space-occupying lesions. Initially, the patient was thought to have metastasis of a pancreatic tumor. However, the patient was diagnosed as pancreatic neuroendocrine tumors, liver perivascular epithelioid tumors, splenic hamartoma, and renal angiomyolipoma by pathological examination after surgery. We performed genetic mutation detection to identify that tuberous sclerosis complex 2 gene presented with a heterozygous variant. Tuberous sclerosis often presents with widespread tumors, but it is less common to present with pancreatic neuroendocrine tumors and liver perivascular tumors as highlighted in the case. So we analyzed the relationship between TSC gene mutations and related tumors. And we also reviewed the current molecular mechanisms and treatments for tuberous sclerosis complex
Genome-Wide Histone H3K27 Acetylation Profiling Identified Genes Correlated With Prognosis in Papillary Thyroid Carcinoma
Thyroid carcinoma (TC) is the most common endocrine malignancy, and papillary TC (PTC) is the most frequent subtype of TC, accounting for 85–90% of all the cases. Aberrant histone acetylation contributes to carcinogenesis by inducing the dysregulation of certain cancer-related genes. However, the histone acetylation landscape in PTC remains elusive. Here, we interrogated the epigenomes of PTC and benign thyroid nodule (BTN) tissues by applying H3K27ac chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) along with RNA-sequencing. By comparing the epigenomic features between PTC and BTN, we detected changes in H3K27ac levels at active regulatory regions, identified PTC-specific super-enhancer-associated genes involving immune-response and cancer-related pathways, and uncovered several genes that associated with disease-free survival of PTC. In summary, our data provided a genome-wide landscape of histone modification in PTC and demonstrated the role of enhancers in transcriptional regulations associated with prognosis of PTC
LRP16 Integrates into NF-κB Transcriptional Complex and Is Required for Its Functional Activation
BACKGROUND: Nuclear factor κB (NF-κB)-mediated pathways have been widely implicated in cell survival, development and tumor progression. Although the molecular events of determining NF-κB translocation from cytoplasm to nucleus have been extensively documented, the regulatory mechanisms of NF-κB activity inside the nucleus are still poorly understood. Being a special member of macro domain proteins, LRP16 was previously identified as a coactivator of both estrogen receptor and androgen receptor, and as an interactor of NF-κB coactivator UXT. Here, we investigated the regulatory role of LRP16 on NF-κB activation. METHODOLOGY: GST pull-down and coimmunoprecipitation (CoIP) assays assessed protein-protein interactions. The functional activity of NF-κB was assessed by luciferase assays, changes in expression of its target genes, and its DNA binding ability. Annexin V staining and flow cytometry analysis were used to evaluate cell apoptosis. Immunohistochemical staining of LRP16 and enzyme-linked immunosorbent assay-based evaluation of active NF-κB were performed on primary human gastric carcinoma samples. RESULTS: We demonstrate that LRP16 integrates into NF-κB transcriptional complex through associating with its p65 component. RNA interference knockdown of the endogenous LRP16 in cells leads to impaired NF-κB activity and significantly attenuated NF-κB-dependent gene expression. Mechanistic analysis revealed that knockdown of LRP16 did not affect tumor necrosis factor α (TNF-α)-induced nuclear translocation of NF-κB, but blunted the formation or stabilization of functional NF-κB/p300/CREB-binding protein transcription complex in the nucleus. In addition, knockdown of LRP16 also sensitizes cells to apoptosis induced by TNF-α. Finally, a positive link between LRP16 expression intensity in nuclei of tumor cells and NF-κB activity was preliminarily established in human gastric carcinoma specimens. CONCLUSIONS: Our findings not only indicate that LRP16 is a crucial regulator for NF-κB activation inside the nucleus, but also suggest that LRP16 may be an important contributor to the aberrant activation of NF-κB in tumors
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Physical exercise improves the premature muscle aging and lifespan reduction induced by high-salt intake and muscle CG2196(salt) overexpression in Drosophila
Aging decreases muscle mass, strength, and functional capacity. High-salt stress seems to promote muscle aging and decrease lifespan. However, exercise delays muscle aging and increases longevity, and it may protect muscle from rapid aging induced by high-salt intake (HSI), but the molecular mechanisms are poorly understood. In this study, the flies were fed a high-salt diet and trained to exercise. Muscle CG2196 (salt) gene and dSir2 gene were over-expressed by building mef2-gal4/UAS system. The results showed that both physical exercise and muscle dSir2 gene overexpression prevented HSI-induced and muscle salt overexpression-induced accelerated age-related decline of climbing index, climbing endurance, muscle NAD+ level, SOD activity level, dSir2 expression, and dFOXO expression, and they also prevented HSI-induced and muscle salt overexpression-induced accelerated age-related increase in muscle ROS level, MDA level, and salt gene expression. Physical exercise improved lifespan decrease induced by HSI and muscle salt overexpression. Therefore, current results indicated that high-salt stress accelerated muscle aging by decreasing muscular NAD+/dSir2/dFOXO pathway activity and increasing oxidative stress. Physical exercise protected muscle from accelerated aging induced by high-salt stress through activating muscle NAD+/dSir2/dFOXO pathway and enhancing muscle oxidation resistance. The combination of exercise and muscle dSir2 overexpression had the best protective effect on muscle aging and lifespan in flies
- …