25 research outputs found

    Post-Domestication Selection in the Maize Starch Pathway

    Get PDF
    Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway

    Experimental Study on Bonding Properties between Finishing Rolled Rebar and Grouting Material

    No full text
    In bearing capacity testing of prestressed concrete pipe piles, grouting material is filled up to the bottom of the pipe pile, which is equipped with a finishing rolled rebar. The reaction force of the reaction beam is transferred to the anchor pile through the bonding force between the finishing rolled rebar and grouting material. Therefore, investigating the bonding properties between the finishing rolled rebar and grouting material is essential to remove barriers to the application of the anchor pile method in bearing capacity testing of the prestressed concrete pipe pile. In this study, the bonding properties of 11 groups of specimens were studied through pull-out tests, and the effects of the cover thickness, diameter, and anchorage length of reinforcement on the bond strength between finishing rolled rebar and grouting material as well as on the bond stress-slip curve were explored. The test results showed that the bond stress-slip curve between finishing rolled rebar and grouting material can be divided into two stages, i.e., slip stage and splitting failure stage. In the slip stage, a linear relationship exists between bond stress and slip amount, and microcracks appear in the grouting material around the finishing rolled rebar. In the splitting failure stage, the slip amount increases rapidly under uplift load. Finally, the grouting material around the finishing rolled rebar forms a failure zone, and splitting failure occurs. The bonding capacity and bond strength between finishing rolled rebar and grouting material increase with the increasing cover thickness of the rebar. The bond strength is the maximum for a relative cover thickness of 3.0, and the difference between the maximum and minimum values is more than 9%. The bonding capacity between rebar and grouting material increases slightly with the increasing rebar diameter, but the bond strength decreases with the diameter, and the difference between the maximum and minimum bond strengths is more than 21%. As the contact area between finishing rolled rebar and grouting material increases, the bonding capacity between them increases with the increasing anchorage length of the rebar. However, the bond strength first increases, then decreases, and finally stabilizes with the increasing anchorage length, and the difference between the maximum and minimum bond strengths exceeds 14.64%
    corecore