841 research outputs found

    The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area.

    No full text
    Glomalin-related soil protein (GRSP), a widespread glycoprotein produced by arbuscular mycorrhizal fungi (AMF), is crucial for ecosystem functioning and ecological restoration. In the present study, an investigation was conducted to comprehensively analyze the effects of heavy metal (HM) contamination on AMF status, soil properties, aggregate distribution and stability, and their correlations at different soil depths (0-10, 10-20, 20-30, 30-40 cm). Our results showed that the mycorrhizal colonization (MC), hyphal length density (HLD), GRSP, soil organic matter (SOM) and soil organic carbon (SOC) were significantly inhibited by Pb compared to Zn at 0-20 cm soil depth, indicating that HM had significant inhibitory effects on AMF growth and soil properties, and that Pb exhibited greater toxicity than Zn at shallow layer of soil. Both the proportion of soil large macroaggregates (>2000 ÎĽm) and mean weight diameter (MWD) were positively correlated with GRSP, SOM and SOC at 0-20 cm soil depth (P < 0.05), proving the important contributions of GRSP, SOM and SOC for binding soil particles together into large macroaggregates and improving aggregate stability. Furthermore, MC and HLD had significantly positive correlation with GRSP, SOM and SOC, suggesting that AMF played an essential role in GRSP, SOM and SOC accumulation and subsequently influencing aggregate formation and particle-size distribution in HM polluted soils. Our study highlighted that the introduction of indigenous plant associated with AMF might be a successful biotechnological tool to assist the recovery of HM polluted soils, and that proper management practices should be developed to guarantee maximum benefits from plant-AMF symbiosis during ecological restoration

    The response of dark septate endophytes (DSE) to heavy metals in pure culture.

    Get PDF
    Dark septate endophytes (DSE) occur widely in association with plants exposed to heavy metal stress. However, little is known about the response of DSE exposed to heavy metals. In this study, five DSE were isolated from the roots of Astragalus adsurgens Pall. seedlings growing on lead-zinc mine tailings in China. Based on morphological characteristics and DNA sequence analyses, the isolates were identified as Gaeumannomyces cylindrosporus, Paraphoma chrysanthemicola, Phialophora mustea, Exophiala salmonis, and Cladosporium cladosporioides. G. cylindrosporus was selected to explore responses to Pb stress. Scanning electron microscopic observations of G. cylindrosporus grown on solid medium revealed curling of hyphae and formation of hyphal coils in response to Pb. In contrast, in liquid medium, hyphae became thick and swollen with an increase in Pb (II) concentration. We interpret that these changes are related to the variation in cell wall components. We also demonstrated that fungal melanin content increased with the addition of Pb(II). Melanin, as an important component in the cell wall, is known to be an essential antioxidant responsible for decreasing heavy metal toxicity. We also measured the total soluble protein content and glutathione (GSH) concentrations in G. cylindrosporus and found that they initially increased and then decreased with the increase of Pb(II) concentrations. The antioxidant enzyme activities were also examined, and the results showed that superoxide dismutase (SOD) activity was significantly positively correlated with Pb(II) concentrations (r = 0.957, P<0.001). Collectively, our observations indicate that the intracellular antioxidant systems, especially fungal melanin, play an important role in abating the hazards of heavy metals

    Comparisons of Soil Properties, Enzyme Activities and Microbial Communities in Heavy Metal Contaminated Bulk and Rhizosphere Soils of Robinia pseudoacacia L. in the Northern Foot of Qinling Mountain

    No full text
    The toxic effects of heavy metal (HM) contamination on plant metabolism and soil microorganisms have been emphasized recently; however, little is known about the differences in soil physical, chemical, and biological properties between bulk and rhizosphere soils contaminated with HMs in forest ecosystem. The present study was conducted to evaluate the rhizosphere effect on soil properties, enzyme activities and bacterial communities associated with Robinia pseudoacacia L. along a HM contamination gradient. Soil organic matter (SOM), available nitrogen (AN) and phosphorus (AP) contents were significantly higher in rhizosphere soil than those in bulk soil at HM contaminated sites (p &lt; 0.05). Compared to bulk soil, activities of four soil enzymes indicative of C cycle (β-glucosidase), N cycle (protease, urease) and P cycle (alkaline phosphatase) in rhizosphere soil across all study sites increased by 47.5%, 64.1%, 52.9% and 103.8%, respectively. Quantitative PCR (qPCR) and restriction fragment length polymorphism (RFLP) were used to determine the relative abundance, composition and diversity of bacteria in both bulk and rhizosphere soils, respectively. The copy number of bacterial 16S rRNA gene in bulk soil was significantly lower than that in rhizosphere soil (p &lt; 0.05), and it had significantly negative correlations with total/DTPA-extractable Pb concentrations (p &lt; 0.01). Alphaproteobacteria, Gammaproteobacteria and Firmicutes were the most dominant groups of bacteria at different study sites. The bacterial diversity index of Species richness (S) and Margalef (dMa) were significantly higher in rhizosphere soil compared with those in bulk soil, although no difference could be found in Simpson index (D) between bulk and rhizosphere soils (p &gt; 0.05). Redundancy analysis (RDA) results showed that soil pH, EC, SOM and total/DTPA-extractable Pb concentrations were the most important variables affecting relative abundance, composition and diversity of bacteria (p &lt; 0.05). Our study highlights the importance of rhizosphere effect on soil nutrient content, enzyme activity, bacterial abundance and community in HM contaminated forest soils. Further study is still required to understand the specific processes in the rhizosphere to achieve a suitable rhizosphere biotechnology for restoration of degraded forest ecosystem

    Impact of Funneliformis mosseae on the growth, lead uptake, and localization of Sophora viciifolia

    No full text
    px; &quot;&gt; &lt;On the basis of a pot experiment under lead (Pb) stress, we investigated the effects of an arbuscular mycorrhizal (AM) fungus (Funneliformis mosseae) on the growth and Pb uptake of Sophora viciifolia L., and explored the Pb localization in AM roots using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that high Pb levels (500 and 1000 g/g) inhibited the growth of S. viciifolia seedlings. Compared with the noninoculation treatment, F. mosseae inoculation decreased the Pb concentrations above- and belowground by 61.0% and 15.2%, when exposed to Pb at a concentration of 1000 g/g. The root length, fork number, tip number, surface area, and volume of mycorrhizal S. viciifolia were higher than those of the corresponding nonmycorrhizal plants. These parameters of mycorrhizal plants increased by 220%, 219%, 157%, 225%, and 278% when plants were exposed to Pb at 1000 g/g compared with nonmycorrhizal plants. The ratio of root length with diameters between 0&ndash;0.2 mm to the total root length significantly increased under Pb stress, and F. mosseae inoculation significantly reduced the ratio. Under Pb stress, F. mosseae increased the ratios of root length with 0.61&ndash;0.8 and 0.81&ndash;1.0 mm diameters to the total root length, indicating that F. mosseae tended to thicken the roots of S. viciifolia under Pb additions. The combined results of TEM and EDS indicated that Pb deposited in not only plant cells but also the cell walls and vacuoles of the AM fungal intracellular hyphae, thus revealing the subcellular-level mechanism of AM fungi in alleviating the Pb toxicity to the host plant.</span

    Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils

    No full text
    The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant–fungus–soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead–zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas

    Soil chemical properties at different soil depths and study sites.

    No full text
    <p>Soil chemical properties at different soil depths and study sites.</p

    Correlational analysis among GRSP concentration, soil properties AMF status at different soil depths and study sites.

    No full text
    <p>Correlational analysis among GRSP concentration, soil properties AMF status at different soil depths and study sites.</p

    Soil total/DTPA-extractable Pb (a) and Zn (b) concentrations at different soil depths and study sites.

    No full text
    <p>The bar charts represent total Pb or Zn concentration, while the line graphs show DTPA-extractable Pb or Zn concentration. Each value is the mean ± SD (n = 6). Different letters indicate statistically significant differences (one-way ANOVA followed by SNK test, <i>P</i> < 0.05) at four soil depths (0–10, 10–20, 20–30, 30–40 cm).</p

    Mycorrhizal colonization (MC, a), AMF spore density (SP, b) and hyphal length density (HLD, c) at different soil depths and study sites.

    No full text
    <p>Each value is the mean ± SD (n = 6). Different letters indicate statistically significant differences (one-way ANOVA followed by SNK test, <i>P</i> < 0.05) at four soil depths (0–10, 10–20, 20–30, 30–40 cm).</p
    • …
    corecore