1,274 research outputs found

    Optimal Treatment Regimes for Proximal Causal Learning

    Full text link
    A common concern when a policymaker draws causal inferences from and makes decisions based on observational data is that the measured covariates are insufficiently rich to account for all sources of confounding, i.e., the standard no confoundedness assumption fails to hold. The recently proposed proximal causal inference framework shows that proxy variables that abound in real-life scenarios can be leveraged to identify causal effects and therefore facilitate decision-making. Building upon this line of work, we propose a novel optimal individualized treatment regime based on so-called outcome and treatment confounding bridges. We then show that the value function of this new optimal treatment regime is superior to that of existing ones in the literature. Theoretical guarantees, including identification, superiority, excess value bound, and consistency of the estimated regime, are established. Furthermore, we demonstrate the proposed optimal regime via numerical experiments and a real data application.Comment: NeurIPS 202

    THREE ESSAYS ON INTERNATIONAL TRANSMISSION OF SHOCKS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    LightSAGE: Graph Neural Networks for Large Scale Item Retrieval in Shopee's Advertisement Recommendation

    Full text link
    Graph Neural Network (GNN) is the trending solution for item retrieval in recommendation problems. Most recent reports, however, focus heavily on new model architectures. This may bring some gaps when applying GNN in the industrial setup, where, besides the model, constructing the graph and handling data sparsity also play critical roles in the overall success of the project. In this work, we report how GNN is applied for large-scale e-commerce item retrieval at Shopee. We introduce our simple yet novel and impactful techniques in graph construction, modeling, and handling data skewness. Specifically, we construct high-quality item graphs by combining strong-signal user behaviors with high-precision collaborative filtering (CF) algorithm. We then develop a new GNN architecture named LightSAGE to produce high-quality items' embeddings for vector search. Finally, we design multiple strategies to handle cold-start and long-tail items, which are critical in an advertisement (ads) system. Our models bring improvement in offline evaluations, online A/B tests, and are deployed to the main traffic of Shopee's Recommendation Advertisement system
    corecore