60 research outputs found

    Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping

    Get PDF
    Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k(1)) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120 min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment. (C) 2016 Elsevier B.V. All rights reserved.National Natural Science Foundation of China [51508006]; Natural Science Foundation of the Colleges and Universities in Jiangsu Province [15KJB610011]SCI(E)[email protected]; [email protected]

    Quantized octupole acoustic topological insulator

    Full text link
    The Berry phase associated with energy bands in crystals can lead to quantized quantities, such as the quantization of electric dipole polarization in an insulator, known as a one-dimensional (1D) topological insulator (TI) phase. Recent theories have generalized such quantization from dipole to higher multipole moments, giving rise to the discovery of multipole TIs, which exhibit a cascade hierarchy of multipole topology at boundaries of boundaries: A quantized octupole moment in the three-dimensional (3D) bulk can induce quantized quadrupole moments on its two-dimensional (2D) surfaces, which then produce quantized dipole moments along 1D hinges. The model of 2D quadrupole TI has been realized in various classical structures, exhibiting zero-dimensional (0D) in-gap corner states. Here we report on the realization of a quantized octupole TI on the platform of a 3D acoustic metamaterial. By direct acoustic measurement, we observe 0D corner states, 1D hinge states, 2D surface states, and 3D bulk states, as a consequence of the topological hierarchy from octupole moment to quadrupole and dipole moment. The critical conditions of forming a nontrivial octupole moment are further demonstrated by comparing with another two samples possessing a trivial octupole moment. Our work thus establishes the multipole topology and its full cascade hierarchy in 3D geometries

    Comparing Monofractal and Multifractal Analysis of Corrosion Damage Evolution in Reinforcing Bars

    Get PDF
    Based on fractal theory and damage mechanics, the aim of this paper is to describe the monofractal and multifractal characteristics of corrosion morphology and develop a new approach to characterize the nonuniform corrosion degree of reinforcing bars. The relationship between fractal parameters and tensile strength of reinforcing bars are discussed. The results showed that corrosion mass loss ratio of a bar cannot accurately reflect the damage degree of the bar. The corrosion morphology of reinforcing bars exhibits both monofractal and multifractal features. The fractal dimension and the tensile strength of corroded steel bars exhibit a power function relationship, while the width of multifractal spectrum and tensile strength of corroded steel bars exhibit a linear relationship. By comparison, using width of multifractal spectrum as multifractal damage variable not only reflects the distribution of corrosion damage in reinforcing bars, but also reveals the influence of nonuniform corrosion on the mechanical properties of reinforcing bars. The present research provides a new approach for the establishment of corrosion damage constitutive models of reinforcing bars

    Association of Mitochondrial DNA Haplogroups with Exceptional Longevity in a Chinese Population

    Get PDF
    BACKGROUND: Longevity is a multifactorial trait with a genetic contribution, and mitochondrial DNA (mtDNA) polymorphisms were found to be involved in the phenomenon of longevity. METHODOLOGY/PRINCIPAL FINDINGS: To explore the effects of mtDNA haplogroups on the prevalence of extreme longevity (EL), a population based case-control study was conducted in Rugao--a prefecture city in Jiangsu, China. Case subjects include 463 individuals aged > or = 95 yr (EL group). Control subjects include 926 individuals aged 60-69 years (elderly group) and 463 individuals aged 40-49 years (middle-aged group) randomly recruited from Rugao. We observed significant reduction of M9 haplogroups in longevity subjects (0.2%) when compared with both elderly subjects (2.2%) and middle-aged subjects (1.7%). Linear-by-linear association test revealed a significant decreasing trend of N9 frequency from middle-aged subjects (8.6%), elderly subjects (7.2%) and longevity subjects (4.8%) (p = 0.018). In subsequent analysis stratified by gender, linear-by-linear association test revealed a significant increasing trend of D4 frequency from middle-aged subjects (15.8%), elderly subjects (16.4%) and longevity subjects (21.7%) in females (p = 0.025). Conversely, a significant decreasing trend of B4a frequency was observed from middle-aged subjects (4.2%), elderly subjects (3.8%) and longevity subjects (1.7%) in females (p = 0.045). CONCLUSIONS: Our observations support the association of mitochondrial DNA haplogroups with exceptional longevity in a Chinese population

    Microbial community composition in urban riverbank sediments: response to municipal effluents over spatial gradient

    No full text
    Municipal effluents have adverse impacts on the aquatic ecosystem and especially the microbial community. This study described the compositions of sediment bacterial communities in the urban riverbank over the spatial gradient. Sediments were collected from seven sampling sites of the Macha River. The physicochemical parameters of sediment samples were determined. The bacterial communities in sediments were analyzed by 16S rRNA gene sequencing. The results showed that these sites were affected by different types of effluents, leading to regional variations in the bacterial community. The higher microbial richness and biodiversity at SM2 and SD1 sites were correlated with the levels of NH4+-N, organic matter, effective sulphur, electrical conductivity, and total dissolved solids (p < 0.01). Organic matter, total nitrogen, NH4+-N, NO3-N, pH, and effective sulphur were identified to be important drivers for bacterial community distribution. At the phylum level, Proteobacteria (32.8–71.7%) was predominant in sediments, and at the genus level, Serratia appeared at all sampling sites and accounted for the dominant genus. Sulphate-reducing bacteria, nitrifiers, and denitrifiers were detected and closely related to contaminants. This study expanded our understanding of municipal effluents on microbial communities in riverbank sediments, and also provided valuable information for further exploration of microbial community functions. HIGHLIGHTS This study described the compositions of sediment bacterial communities in the municipal effluent-affected urban riverbank over the spatial gradient.; This study showed that different types of effluents led to regional variations in the bacterial community. Downstream effluents were more affected by effluents, accompanied by higher abundance and biodiversity of bacteria.

    In-situ Ti-6Al-4V/TiC composites synthesized by reactive spark plasma sintering: processing, microstructure, and dry sliding wear behaviour

    No full text
    Titanium carbide (TiC) reinforced Titanium Matrix Composites (TMCs) have been synthesized via an in-situ reactive spark plasma sintering (SPS) process using commercial Ti-6Al-4V spherical powders pre-coated with 1 wt% carbon nanoparticles by low-energy ball milling. Graphite flakes are used as carbon source, which aids powder flow during mixing as lubricant. Graphite transforms to nano-crystallite carbon during mixing which is favourable for the rapid formation of TiC second phase in the following SPS process. The composites exhibited a novel honeycomb-like cellular microstructure with the formation of 5–6 vol% fine TiC submicron grains interconnected in the titanium α/β matrix. In addition, the reinforcement of the TiC phase with a nano-hardness of 12.4 GPa, improves the wear resistance of the parent alloy matrix (5.1 GPa), with a reduction of 26–28% in wear rate during dry reciprocating sliding tests against Si3N4 balls. During sliding, the wear debris (predominantly anatase TiO2) builds up on the raised TiC hard phase forming a barrier layer of adhered oxide that can protect the alloy matrix underneath from abrasion and oxidation, leading to a reduced wear rate
    • …
    corecore