42 research outputs found

    Suppression of methane uptake by precipitation pulses and long-term nitrogen addition in a semi-arid meadow steppe in northeast China

    Get PDF
    In the context of global change, the frequency of precipitation pulses is expected to decrease while nitrogen (N) addition is expected to increase, which will have a crucial effect on soil C cycling processes as well as methane (CH4) fluxes. The interactive effects of precipitation pulses and N addition on ecosystem CH4 fluxes, however, remain largely unknown in grassland. In this study, a series of precipitation pulses (0, 5, 10, 20, and 50 mm) and long-term N addition (0 and 10 g N m-2 yr-1, 10 years) was simulated to investigate their effects on CH4 fluxes in a semi-arid grassland. The results showed that large precipitation pulses (10 mm, 20 mm, and 50 mm) had a negative pulsing effect on CH4 fluxes and relatively decreased the peak CH4 fluxes by 203-362% compared with 0 mm precipitation pulse. The large precipitation pulses significantly inhibited CH4 absorption and decreased the cumulative CH4 fluxes by 68-88%, but small precipitation pulses (5 mm) did not significantly alter it. For the first time, we found that precipitation pulse size increased cumulative CH4 fluxes quadratically in both control and N addition treatments. The increased soil moisture caused by precipitation pulses inhibited CH4 absorption by suppressing CH4 uptake and promoting CH4 release. Nitrogen addition significantly decreased the absorption of CH4 by increasing NH4+-N content and NO3–-N content and increased the production of CH4 by increasing aboveground biomass, ultimately suppressing CH4 uptake. Surprisingly, precipitation pulses and N addition did not interact to affect CH4 uptake because precipitation pulses and N addition had an offset effect on pH and affected CH4 fluxes through different pathways. In summary, precipitation pulses and N addition were able to suppress the absorption of CH4 from the atmosphere by soil, reducing the CH4 sink capacity of grassland ecosystems

    An Energy-Saving Optimization Method of Dynamic Scheduling for Disassembly Line

    No full text
    Concerns have been increasing regarding the environmental sustainability of disassembly activities that take place in various recovery operations at end of life stage of products, and subsequently, disassembly activities have been gaining increased exposure. The disassembly line is a good choice for automated disassembly of end-of-life products. Although interest in addressing energy saving in manufacturing is rising, the study of incorporating energy consumption reduction and disassembly efficiency improvement into disassembly line balancing is still limited. The analysis, design, and balanced decision-making for disassembly lines are urgently needed in order to make the disassembly line as energy-saving as possible. In this paper, an energy-saving optimization method, which was used in scheduling workstation selection and the disassembly sequence for the disassembly line, is proposed. Energy consumption of each stage of the disassembling process was analyzed and modeled. Then, a mathematical model of the disassembly line balancing problem with energy saving considerations was formulated and the objective of energy consumption was integrated into the objectives of cost and working load in order to balance a disassembly line. Optimal solutions for the disassembly line balancing problem with an energy saving consideration were obtained by using an artificial bee colony algorithm, which was a feasible way of minimizing workstations, and ensuring similar working load, as well as minimizing energy consumption. Finally, a case study of disassembly line balancing for a typical driving system is presented to illustrate the proposed method

    A Robust Predicted Performance Analysis Approach for Data-Driven Product Development in the Industrial Internet of Things

    No full text
    Industrial Internet of Things (IoT) is a ubiquitous network integrating various sensing technologies and communication technologies to provide intelligent information processing and smart control abilities for the manufacturing enterprises. The aim of applying industrial IoT is to assist manufacturers manage and optimize the entire product manufacturing process to improve product quality and production efficiency. Data-driven product development is considered as one of the critical application scenarios of industrial IoT, which is used to acquire the satisfied and robust design solution according to customer demands. Performance analysis is an effective tool to identify whether the key performance have reached the requirements in data-driven product development. The existing performance analysis approaches mainly focus on the metamodel construction, however, the uncertainty and complexity in product development process are rarely considered. In response, this paper investigates a robust performance analysis approach in industrial IoT environment to help product developers forecast the performance parameters accurately. The service-oriented layered architecture of industrial IoT for product development is first described. Then a dimension reduction approach based on mutual information (MI) and outlier detection is proposed. A metamodel based on least squares support vector regression (LSSVR) is established to conduct performance prediction process. Furthermore, the predicted performance analysis method based on confidence interval estimation is developed to deal with the uncertainty to improve the robustness of the forecasting results. Finally, a case study is given to show the feasibility and effectiveness of the proposed approach

    Crashworthiness Optimization Design of Aluminum Alloy Thin-Walled Triangle Column Based on Bioinspired Strategy

    No full text
    Aluminum alloy thin-walled structures have been well used in applications of energy absorption. In the present work, a bioinspired design strategy for aluminum alloy thin-walled structures is proposed to improve the performance of out-of-plane crashworthiness by altering the material distribution. According to the proposed strategy, a novel fractal thin-walled triangle column (FTTC) is designed, which is composed by iteratively applying the affine transformation of a base triangle up to 2nd-order. The finite element model is established to investigate the out-of-plane crashworthiness of FTTC and validated by experiment results. The numerical analysis of the crashworthiness of FTTC with different fractal orders (0th, 1st and 2nd) are performed, and the results show that 1st- and 2nd-order FTTC enhance the energy absorption of structures and crush force efficiency. In particular, 2nd-order FTTC has better energy absorption ability due to the optimal distribution of materials, which are efficiently organized by the proposed bioinspired design strategy. In addition, a parameter study is performed to investigate the effect of FTTC geometric details on the crushing procedure. The collapse mode shows that it tends to change from unstable to stable with the increase in thickness and side length and the decrease in height. Moreover, a positive relevant relationship is identified between the thickness and the crashworthiness for FTTC

    An Energy Efficiency Tool Path Optimization Method Using a Discrete Energy Consumption Path Model

    No full text
    As the energy cost accounts for about one-third of the total manufacturing cost, there is great significance in evaluating and managing energy consumption in manufacturing processes. The energy consumption during multi-axis end milling, which represents a large part of the industrial energy costs, is usually extraordinarily large, especially for complex free-form surfaces requiring multi-finish-machining. To obtain the most efficient tool path, the tool orientation is adjusted to obtain the largest cutting stripe width at each cutter contact point. However, the use of excessive driving energy consumption and cutting energy to obtain the largest cutting stripe width may reduce the energy efficiency of the tool path. To solve this problem, the geometry features of the tool path are analyzed firstly, and the global energy consumption analysis, which includes a cutting energy analysis and driving energy analysis, is conducted. The discrete energy consumption path model is constructed to find the most energy-efficient tool orientation sequence for a tool path. Finally, contrast experiments are carried out to validate the proposed method

    An Energy Efficiency Tool Path Optimization Method Using a Discrete Energy Consumption Path Model

    No full text
    As the energy cost accounts for about one-third of the total manufacturing cost, there is great significance in evaluating and managing energy consumption in manufacturing processes. The energy consumption during multi-axis end milling, which represents a large part of the industrial energy costs, is usually extraordinarily large, especially for complex free-form surfaces requiring multi-finish-machining. To obtain the most efficient tool path, the tool orientation is adjusted to obtain the largest cutting stripe width at each cutter contact point. However, the use of excessive driving energy consumption and cutting energy to obtain the largest cutting stripe width may reduce the energy efficiency of the tool path. To solve this problem, the geometry features of the tool path are analyzed firstly, and the global energy consumption analysis, which includes a cutting energy analysis and driving energy analysis, is conducted. The discrete energy consumption path model is constructed to find the most energy-efficient tool orientation sequence for a tool path. Finally, contrast experiments are carried out to validate the proposed method
    corecore