56 research outputs found

    A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles

    Get PDF
    The limiting void ratios (i.e., the minimum and the maximum void ratios) are two important index properties, which are related to the compressibility, shear strength, and permeability of granular soils. Experimental studies have shown that the limiting void ratios are correlated to morphological properties of soil particles (i.e. particle size and particle shape). However, empirical equations available in literature for the limiting void ratios are generally single-variable functions of either particle size, or particle shape. In this study, we propose multi-variable equations, in which the limiting void ratios are functions of both particle size and particle shape. The coupled effects of particle size and particle shape on the limiting void ratios are illustrated. Advantages of the proposed multi-variable equations over the existing single-variable equations are shown by comparing the calculated void ratios with the experimental data on a large number of uniform sand samples. The proposed multi-variable equations can be applied to predict the limiting void ratios of uniform sands encountered in geotechnical engineering projects in order to properly support heavy loads

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Hidden dynamics, synchronization, and circuit implementation of a fractional-order memristor-based chaotic system

    No full text
    Fractional calculus has always been regarded as an ideal mathematical tool to describe the memory of complex systems and special materials. A fractional-order memristor-based chaotic system with hidden dynamics is studied in this paper. The system can exhibit excellent dynamic behavior by introducing a quadratic nonlinear memristor. Asymmetric coexistence occurs when both the order and parameter change. Considering the practical application of fractional-order system, the spectral entropy (SE) algorithm is used to investigate the complexity of the system. Besides, synchronous experiment between two fractional-order system is carried out and the synchronization circuit is also designed. To verify the numerical simulation results, the hardware circuit is constructed, and the hidden attractors are successfully captured on the oscilloscope by hardware electronic circuit

    Three-dimensional DEM simulation of cone penetration test by using circumferential periodic boundary

    No full text
    In order to explore the micro-mechanism of CPT, a new circumferential periodic boundary was developed to consider the three-dimensional axisymmetric problem with 1/4 of the cylinder. To validate the method, a drained triaxial test was modeled with the proposed method and the traditional full model. The results are comparable and the proposed method is very effective. The method was further used to simulate a cone penetration test in dry Fontainebleau sand. It was found that, the variation of cone radial stress and tip resistance during penetration from the model are in good agreement with the reported test results. The micromechanical responses, such as the distributions of particle displacement, internal stress and local porosity to cone penetration are extensively studied. The evolutions of fabric anisotropy during penetration are also discussed. The relationship between stress and fabric is quantitatively described using fabric tensor, which reveals the mechanism of cone penetration capacity microscopically. The results of the work not only improve the efficiency of three-dimensional discrete element method(DEM) simulation, but also promote better understanding of CPT mechanism. © 2016, Science Press. All right reserved

    Model Test Research on Bearing Mechanism of Underreamed Ground Anchor in Sand

    No full text
    To improve the capacity of ground anchors, scholars and engineers worldwide have developed various types of underreamed anchors with expanded anchor parts. Underreamed anchors have a completely different mechanism from traditional shaft anchors. The expanded section of an underreamed anchor induces an end bearing force to endure the uplift force similar to a reversed pile. Therefore, the total resistance of an underreamed anchor includes friction and end bearing force. To clarify the bearing mechanism of underreamed anchors, a series of model tests were performed using fiber Bragg grating (FBG) sensors and the photogrammetry measuring method. Based on the tests, the distribution and development of the friction and end bearing force of the underreamed anchor model were acquired by the FBG sensors when being pulled out. Moreover, the deformation state of the soil around the anchor model was observed by the digital photogrammetry measuring method. Finally, the interaction mechanism between an underreamed anchor and surrounding sand was obtained, which was identified as the inherent reason for the distribution and development law of the resistance of the underreamed anchor in sand
    • …
    corecore