3,958 research outputs found

    Statefinder diagnostic for the modified polytropic Cardassian universe

    Get PDF
    We apply the Statefinder diagnostic to the Modified Polytropic Cardassian Universe in this work. We find that the Statefinder diagnostic is quite effective to distinguish Cardassian models from a series of other cosmological models. The srs-r plane is used to classify the Modified Polytropic Cardassian models into six cases. The evolutionary trajectories in the srs-r plane for the cases with different nn and β\beta reveal different evolutionary properties of the universe. In addition, we combine the observational H(z)H(z) data, the Cosmic Microwave Background (CMB) data and the Baryonic Acoustic Oscillation (BAO) data to make a joint analysis. We find that \textbf{Case 2} can be excluded at the 68.3% confidence level and any case is consistent with the observations at the 95.4% confidence level.Comment: Comments: Final version for publication in Physical Review D [minor revision to match the appear version] Journal-ref: Physical Review D 75, 083515 (2007

    Cosmological constraints from Radial Baryon Acoustic Oscillation measurements and Observational Hubble data

    Full text link
    We use the Radial Baryon Acoustic Oscillation (RBAO) measurements, distant type Ia supernovae (SNe Ia), the observational H(z)H(z) data (OHD) and the Cosmic Microwave Background (CMB) shift parameter data to constrain cosmological parameters of Λ\LambdaCDM and XCDM cosmologies and further examine the role of OHD and SNe Ia data in cosmological constraints. We marginalize the likelihood function over hh by integrating the probability density Peχ2/2P\propto e^{-\chi^{2}/2} to obtain the best fitting results and the confidence regions in the ΩmΩΛ\Omega_{m}-\Omega_{\Lambda} plane.With the combination analysis for both of the {\rm Λ\Lambda}CDM and XCDM models, we find that the confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMB data which is consistent with the result of Lin et al's work. With more data of OHD, we can probably constrain the cosmological parameters using OHD data instead of SNe Ia data in the future.Comment: 8 pages, 6 figures, 2 tables, accepted for publication in Physics Letters

    Thermodynamical properties of dark energy with the equation of state ω=ω0+ω1z% \omega =\omega_{0}+\omega_{1}z

    Full text link
    The thermodynamical properties of dark energy are usually investigated with the equation of state ω=ω0+ω1z\omega =\omega_{0}+\omega_{1}z. Recent observations show that our universe is accelerating, and the apparent horizon and the event horizon vary with redshift zz. When definitions of the temperature and entropy of a black hole are used to the two horizons of the universe, we examine the thermodynamical properties of the universe which is enveloped by the apparent horizon and the event horizon respectively. We show that the first and the second laws of thermodynamics inside the apparent horizon in any redshift are satisfied, while they are broken down inside the event horizon in some redshift. Therefore, the apparent horizon for the universe may be the boundary of thermodynamical equilibrium for the universe like the event horizon for a black hole.Comment: 6 pages, 5 figures, Accepted for publication in Physical Review

    Large-scale Land Cover Classification in GaoFen-2 Satellite Imagery

    Full text link
    Many significant applications need land cover information of remote sensing images that are acquired from different areas and times, such as change detection and disaster monitoring. However, it is difficult to find a generic land cover classification scheme for different remote sensing images due to the spectral shift caused by diverse acquisition condition. In this paper, we develop a novel land cover classification method that can deal with large-scale data captured from widely distributed areas and different times. Additionally, we establish a large-scale land cover classification dataset consisting of 150 Gaofen-2 imageries as data support for model training and performance evaluation. Our experiments achieve outstanding classification accuracy compared with traditional methods.Comment: IGARSS'18 conference pape

    Detectable MeV neutrinos from black hole neutrino-dominated accretion flows

    Full text link
    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/anti-neutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical NDAF has a neutrino luminosity lower than that of a typical supernova (SN), it can reach 10501051 erg s110^{50}-10^{51}~{\rm erg~s^{-1}} peaking at 10\sim 10 MeV, making them potentially detectable with the upcoming sensitive MeV neutrino detectors if they are close enough to Earth. Based on the observed GRB event rate in the local universe and requiring that at least 3 neutrinos are detected to claim a detection, we estimate a detection rate up to \sim (0.10-0.25) per century for GRB-related NDAFs by the Hyper-Kamiokande (Hyper-K) detector if one neglects neutrino oscillation. If one assumes that all Type Ib/c SNe have an engine-driven NDAF, the Hyper-K detection rate would be \sim (1-3) per century. By considering neutrino oscillations, the detection rate may decrease by a factor of 2-3. Detecting one such event would establish the observational evidence of NDAFs in the universe.Comment: 7 pages, 2 figures, 2 tables, accepted for publication in PR

    Simulation of human thermal responses in a confined space

    Get PDF
    Latest human thermal comfort models, such as the IESD-Fiala model, are active multi-nodal thermal models that simulate physiological regulatory responses, e.g. changing metabolic rate and skin blood flow, shivering and sweating. Commercial CFD packages, such as ANSYS CFX, are widely used in studying transient thermal environment. The purpose of this study is to develop and demonstrate the method for integrating human thermal comfort models with the CFD environment for detailed transient simulations. Different integration strategies are discussed in this paper, as well as the technical problems with using detailed (clothed) 3-D model in the coupled simulation. It is highlighted that further research is required to exploit the full potential of the integrated model in environmental design
    corecore