1,986 research outputs found

    The Role of Ubiquitin System in Autophagy

    Get PDF
    Autophagy is a highly conserved lysosomal degradation pathway, which has been shown to play a pivotal role during normal physiological and pathological conditions. Many proteins and signaling pathways have been shown to regulate autophagy during different stages of the process. Modifying autophagy-related proteins (Atg) by posttranslational modification (PTM) is an important way to control proper autophagic activity. Ubiquitination is one of the PTM that has a crucial role in controlling protein stability and functions. Proteins can be conjugated with ubiquitin chains with different topologies that are associated with different outcomes. Many autophagy regulators are found to be substrates for ubiquitin E3 ligases or deubiquitinating enzymes (DUBs). Ubiquitination modifications of these autophagy regulators result in autophagy induction or termination. Moreover, ubiquitin is also involved in selective autophagy by acting as a degradation signal. Here, we are going to review how E3 ligases and DUBs function in autophagy regulation and discuss the recent findings about ubiquitination regulation in autophagy-related processes and diseases

    β-Lapachone induces heart morphogenetic and functional defects by promoting the death of erythrocytes and the endocardium in zebrafish embryos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-Lapachone has antitumor and wound healing-promoting activities. To address the potential influences of various chemicals on heart development of zebrafish embryos, we previously treated zebrafish embryos with chemicals from a Sigma LOPAC1280™ library and found several chemicals including β-lapachone that affected heart morphogenesis. In this study, we further evaluated the effects of β-lapachone on zebrafish embryonic heart development.</p> <p>Methods</p> <p>Embryos were treated with β-lapachone or dimethyl sulfoxide (DMSO) at 24 or 48 hours post fertilization (hpf) for 4 h at 28°C. Heart looping and valve development was analyzed by whole-mount <it>in situ </it>hybridization and histological analysis. For fractional shortening and wall shear stress analyses, AB and Tg (<it>gata1</it>:<it>DsRed</it>) embryos were recorded for their heart pumping and blood cell circulations via time-lapse fluorescence microscopy. Dextran rhodamine dye injection into the tail reticular cells was used to analyze circulation. Reactive oxygen species (ROS) was analyzed by incubating embryos in 5-(and 6-)-chloromethyl-2',7'-dichloro-dihydrofluorescein diacetate (CM-H<sub>2</sub>DCFDA) and recorded using fluorescence microscopy. <it>o</it>-Dianisidine (ODA) staining and whole mount <it>in situ </it>hybridization were used to analyze erythrocytes. TUNEL assay was used to examine DNA fragmentation.</p> <p>Results</p> <p>We observed a linear arrangement of the ventricle and atrium, bradycardia arrhythmia, reduced fractional shortening, circulation with a few or no erythrocytes, and pericardial edema in β-lapachone-treated 52-hpf embryos. Abnormal expression patterns of <it>cmlc2</it>, <it>nppa</it>, <it>BMP4</it>, <it>versican</it>, and <it>nfatc1</it>, and histological analyses showed defects in heart-looping and valve development of β-lapachone-treated embryos. ROS production was observed in erythrocytes and DNA fragmentation was detected in both erythrocytes and endocardium of β-lapachone-treated embryos. Reduction in wall shear stress was uncovered in β-lapachone-treated embryos. Co-treatment with the NQO1 inhibitor, dicoumarol, or the calcium chelator, BAPTA-AM, rescued the erythrocyte-deficiency in circulation and heart-looping defect phenotypes in β-lapachone-treated embryos. These results suggest that the induction of apoptosis of endocardium and erythrocytes by β-lapachone is mediated through an NQO1- and calcium-dependent pathway.</p> <p>Conclusions</p> <p>The novel finding of this study is that β-lapachone affects heart morphogenesis and function through the induction of apoptosis of endocardium and erythrocytes. In addition, this study further demonstrates the importance of endocardium and hemodynamic forces on heart morphogenesis and contractile performance.</p

    Calculations of polarizabilities and hyperpolarizabilities for the Be+^+ ion

    Get PDF
    The polarizabilities and hyperpolarizabilities of the Be+^+ ion in the 22S2^2S state and the 22P2^2P state are determined. Calculations are performed using two independent methods: i) variationally determined wave functions using Hylleraas basis set expansions and ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be+^+ ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-LL Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.Comment: 18 pp; added details to Sec. I

    Validation of bidimensional measurement in nasopharyngeal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study showed a close relationship between computed tomography (CT)-derived bidimensional measurement of primary tumor and retropharyngeal nodes (BDMprn) and gross tumor volume of primary tumor and retropharyngeal nodes (GTVprn) in nasopharyngeal carcinoma (NPC) and better prognosis for NPC patients with smaller BDMprn. In this study, we report the results on of a study to validate the use of BDM in a separate cohort of NPC patients.</p> <p>Methods</p> <p>We retrospectively reviewed 103 newly diagnosed NPC cases who were treated with radiotherapy/concurrent chemoradiotherapy (CCRT) or CCRT with adjuvant chemotherapy from 2002 to 2009. We used magnetic resonance imaging (MRI) to measure BDMprn. We calculated overall survival, recurrence-free and distant metastasis-free survival curves and set a BDMprn cut off point to categorize patients into a high- or low-risk group. We then used Cox proportional hazard model to evaluate the prognostic influence of BDMprn after correcting age, gender and chemotherapy status.</p> <p>Results</p> <p>After adjusting for age, gender, and chemotherapy status, BDMprn remained an independent prognostic factor for distant metastasis [Hazard ratio (HR) = 1.046; <it>P </it>= 0.042] and overall survival (HR = 1.012; <it>P </it>= 0.012). Patients with BDMprn < 15 cm<sup>2 </sup>had a greater 3-year overall survival rate than those with BDMprn ≧ 15 cm<sup>2 </sup>(92.3% vs. 73.7%; <it>P </it>= 0.009). They also had a greater 3-year distant metastasis-free survival (94% vs.75%; <it>P </it>= 0.034).</p> <p>Conclusion</p> <p>The predictive ability of BDMprn was validated in a separate NPC cohort. A BDMprn of 15 cm<sup>2 </sup>can be used to separate NPC patients into high- and low-risk groups and predict survival rates and metastasis potential. It can, therefore, be used as a reference to design clinical trials, predict prognosis, and make treatment decisions.</p

    What role does PDL1 play in EMT changes in tumors and fibrosis?

    Get PDF
    Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications

    Kinetic Studies on Radical Scavenging Activity of Kaempferol Decreased by Sn(II) Binding

    Get PDF
    Sn(II) binds to kaempferol (HKaem, 3,4&prime;,5,7-tetrahydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) at the 3,4-site forming [Sn(II)(Kaem)2] complex in ethanol. DPPH&bull; scavenging efficiency of HKaem is dramatically decreased by SnCl2 coordination due to formation of acid inhibiting deprotonation of HKaem as ligands and thus reduces the radical scavenging activity of the complex via a sequential proton-loss electron transfer (SPLET) mechanism. Moderate decreases in the radical scavenging of HKaem are observed by Sn(CH3COO)2 coordination and by contact between Sn and HKaem, in agreement with the increase in the oxidation potential of the complex compared to HKaem, leading to a decrease in antioxidant efficiency for fruits and vegetables with Sn as package materials
    corecore