4,681 research outputs found

    Computational study on microstructure evolution and magnetic property of laser additively manufactured magnetic materials

    Full text link
    Additive manufacturing (AM) offers an unprecedented opportunity for the quick production of complex shaped parts directly from a powder precursor. But its application to functional materials in general and magnetic materials in particular is still at the very beginning. Here we present the first attempt to computationally study the microstructure evolution and magnetic properties of magnetic materials (e.g. Fe-Ni alloys) processed by selective laser melting (SLM). SLM process induced thermal history and thus the residual stress distribution in Fe-Ni alloys are calculated by finite element analysis (FEA). The evolution and distribution of the γ\gamma-Fe-Ni and FeNi3_3 phase fractions were predicted by using the temperature information from FEA and the output from CALculation of PHAse Diagrams (CALPHAD). Based on the relation between residual stress and magnetoelastic energy, magnetic properties of SLM processed Fe-Ni alloys (magnetic coercivity, remanent magnetization, and magnetic domain structure) are examined by micromagnetic simulations. The calculated coercivity is found to be in line with the experimentally measured values of SLM-processed Fe-Ni alloys. This computation study demonstrates a feasible approach for the simulation of additively manufactured magnetic materials by integrating FEA, CALPHAD, and micromagnetics.Comment: 20 pages, 15 figure

    A phase-field model of relaxor ferroelectrics based on random field theory

    Full text link
    A mechanically coupled phase-field model is proposed for the first time to simulate the peculiar behavior of relaxor ferroelectrics. Based on the random field theory for relaxors, local random fields are introduced to characterize the effect of chemical disorder. This generic model is developed from a thermodynamic framework and the microforce theory and is implemented by a nonlinear finite element method. Simulation results show that the model can reproduce relaxor features, such as domain miniaturization, small remnant polarization and large piezoelectric response. In particular, the influence of random field strength on these features are revealed. Simulation results on domain structure and hysteresis behavior are discussed and compared with related experimental results.Comment: 8 figure

    Multiscale examination of strain effects in Nd-Fe-B permanent magnets

    Full text link
    We have performed a combined first-principles and micromagnetic study on the strain effects in Nd-Fe-B magnets. First-principles calculations on Nd2Fe14B reveal that the magnetocrystalline anisotropy (K) is insensitive to the deformation along c axis and the ab in-plane shrinkage is responsible for the K reduction. The predicted K is more sensitive to the lattice deformation than what the previous phenomenological model suggests. The biaxial and triaxial stress states have a greater impact on K. Negative K occurs in a much wider strain range in the ab biaxial stress state. Micromagnetic simulations of Nd-Fe-B magnets using first-principles results show that a 3-4% local strain in a 2-nm-wide region near the interface around the grain boundaries and triple junctions leads to a negative local K and thus decreases the coercivity by ~60%. The local ab biaxial stress state is more likely to induce a large loss of coercivity. In addition to the local stress states and strain levels themselves, the shape of the interfaces and the intergranular phases also makes a difference in determining the coercivity. Smoothing the edge and reducing the sharp angle of the triple regions in Nd-Fe-B magnets would be favorable for a coercivity enhancement.Comment: 9 figure

    Research on the Application of Blockchain in SMEs Credit Risk

    Get PDF
    The credit of an enterprise is related to its own development. This paper mainly discusses the relationship between the credit risk of small and medium enterprises (SMEs) and the application degree of blockchain. 64 listed companies with block chain technology as the core theme are selected to analyze their comprehensive financial data. Factor analysis is used to quantitatively evaluate the application degree of blockchain in SMEs, and then the Logistic model is used to evaluate the credit risk of SMEs. Finally, combining the application degree of blockchain in small and medium-sized enterprises and the credit risk assessment of these two groups of data. It confirms the conclusion that the higher the degree of blockchain application, the closer the supply chain finance relationship, and the better the credit status

    Revisiting B_s\to\mu^+\mu^- and B\to K^{(*)}\mu^+\mu^- decays in the MSSM with and without R-parity

    Full text link
    The rare decays B_s -> \mu^+\mu^- and B -> K^{(*)}\mu^+\mu^- are sensitive to new particles and couplings via their interferences with the standard model contributions. Recently, the upper bound on B(B_s -> \mu^+\mu^-) has been improved significantly by the CMS, LHCb, CDF, and D{\O} experiments. Combining with the measurements of B(B-> K^{(*)}\mu^+\mu^-), we derive constraints on the relevant parameters of minimal supersymmetic standard model with and without R-parity, and examine their contributions to the dimuon forward-backward asymmetry in B-> K^{*}\mu^+\mu^- decay. We find that (i) the contribution of R-parity violating coupling products \lambda^{\prime}_{2i2}\lambda^{\prime*}_{2i3} due to squark exchange is comparable with the theoretical uncertainties in B-> K \mu^+\mu^- decay, but still could be significant in B-> K^{*}\mu^+\mu^- decay and could account for the forward-backward asymmetry in all dimuon invariant mass regions; (ii) the constrained mass insertion (\delta^{u}_{LL})_{23} could have significant contribution to dA_{FB}(B-> K^{*}\mu^+\mu^-)/ds, and such effects are favored by thr recent results of the Belle, CDF, and LHCb experiments.Comment: 20 pages, 9 figures, published versio
    • …
    corecore