2,209 research outputs found

    Superconducting cosmic strings as sources of cosmological fast radio bursts

    Full text link
    In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters GμG\mu and I\mathcal{I} of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of Gμ∼[10−14,10−12]G\mu \sim [10^{-14}, 10^{-12}] and I∼[10−1,102] GeV\mathcal{I} \sim [10^{-1}, 10^{2}] ~ \rm{GeV} fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift z=1.3z = 1.3, and the other dominated by kinks at the range of the maximal event rate.Comment: 13 pages, 2 figures, 1 table; references update

    Na4Ir3O8 as a 3D spin liquid with fermionic spinons

    Full text link
    Spin liquid states for spin-1/2 antiferromagnetic Heisenberg model on a hyperkagome lattice are studied. We classify and study flux states according to symmetries. Applying this model to Na4Ir3O8, we propose that the high temperature state may be described by a spinon Fermi surface, which forms a paired state with line nodes below 20 K. The possible mixed spin singlet and spin triplet pairing states are discussed according to the lattice symmetry which breaks inversion.Comment: final versio

    Interference of Two-Dimensional Bose-Einstein Condensates in Micro-Gravity

    Full text link
    We investigate the interference of two-dimensional Bose-Einstein condensates in micro-gravity, which influenced by the interaction strength, initial momentum, gravitational potential and phase difference. We demonstrate that the gravitational potential from the Earth can change the density distribution and phase distribution of the condensate's wave function. As time evolves, a portion of the gravitational potential energy of the microscopic particles can be converted into kinetic energy, which changes the motion of the microscopic particles, and leads to the varying of the density and phase distribution of the wave function. Nevertheless, the influences of the Earth's gravity on the wave function can be eliminated by the micro-gravity environment, which confirmed by many micro-gravity cold atom experiments. Our results present the influences of gravity and other parameters on interference of Bose-Einstein condensates, which help us to reveal the intrinsic natures of the related theoretical predictions and experimental phenomena. Furthermore, our work builds a bridge between the related physical phenomena and our physical intuition about the Bose-Einstein condensates in micro-gravity environment

    The contribution of T2 relaxation time to diffusion MRI quantification and its clinical implications: a hypothesis

    Full text link
    Considering liver as the reference, that both fast diffusion (PF) and slow diffusion (Dslow) of the spleen are much underestimated is likely due to the MRI properties of the spleen such as the much longer T2 relaxation time. It is possible that longer T2 relaxation time partially mitigates the signal decay effect of various gradients on diffusion weighted image. This phenomenon will not be limited to the spleen. Most liver tumors have a longer T2 relaxation time than their native normal tissue and this is considered to be associated with oedema. On the other hand, most tumors are measured with lower MRI diffusion (despite being oedematous). The reason why malignant tumors have lower diffusion value [apparent diffusion coefficient (ADC) and Dslow] are poorly understood but has been proposed to be related to a combination of higher cellularity, tissue disorganization, and increased extracellular space tortuosity. These explanations may be true, but it is also possible to that many tumors have MRI properties similar to the spleen such as longer T2 (relative to the liver) and these MRI properties may also contribute to the lower MRI measured ADC and Dslow . In other words, if we could hypothetically plant a piece of spleen tissue in the liver, MRI would recognize this planted spleen tissue as being similar to a tumor and measure it to have lower diffusion than the liver

    A Note on Scalar-Valued Gap Functions for Generalized Vector Variational Inequalities

    Get PDF
    This paper is concerned with gap functions of generalized vector variational inequalities (GVVI). By using scalarization approach, scalar-valued variational inequalities of (GVVI) are introduced. Some relationships between the solutions of (GVVI) and its scalarized versions are established. Then, by using these relationships and some mild conditions, scalar-valued gap functions for (GVVI) are established

    Nighttime Thermal Infrared Image Colorization with Feedback-based Object Appearance Learning

    Full text link
    Stable imaging in adverse environments (e.g., total darkness) makes thermal infrared (TIR) cameras a prevalent option for night scene perception. However, the low contrast and lack of chromaticity of TIR images are detrimental to human interpretation and subsequent deployment of RGB-based vision algorithms. Therefore, it makes sense to colorize the nighttime TIR images by translating them into the corresponding daytime color images (NTIR2DC). Despite the impressive progress made in the NTIR2DC task, how to improve the translation performance of small object classes is under-explored. To address this problem, we propose a generative adversarial network incorporating feedback-based object appearance learning (FoalGAN). Specifically, an occlusion-aware mixup module and corresponding appearance consistency loss are proposed to reduce the context dependence of object translation. As a representative example of small objects in nighttime street scenes, we illustrate how to enhance the realism of traffic light by designing a traffic light appearance loss. To further improve the appearance learning of small objects, we devise a dual feedback learning strategy to selectively adjust the learning frequency of different samples. In addition, we provide pixel-level annotation for a subset of the Brno dataset, which can facilitate the research of NTIR image understanding under multiple weather conditions. Extensive experiments illustrate that the proposed FoalGAN is not only effective for appearance learning of small objects, but also outperforms other image translation methods in terms of semantic preservation and edge consistency for the NTIR2DC task.Comment: 14 pages, 14 figures. arXiv admin note: text overlap with arXiv:2208.0296

    W boson mass in the NP models with extra U(1)U(1) gauge group

    Full text link
    The precise measurement of the W boson mass is closely related to the contributions of new physics (NP), which can significantly constrain the parameter space of NP models, particularly those with an additional U(1)U(1) local gauge group. The inclusion of a new Z′Z' gauge boson and gauge couplings in these models can contribute to the oblique parameters SS, TT, UU and W boson mass at tree level. Taking into account the effects of kinetic mixing, we calculate and analyze the oblique parameters SS, TT, UU and W boson mass in such NP models in this study. It is found that the kinetic mixing effects can make significant contributions to the W boson mass, which can satisfy the recently measured W boson mass at CDF II or ATLAS by choosing appropriate values of gauge coupling constants and extra U(1)U(1) group charges of leptons or scalar doublets. In addition, if the leptonic Yukawa couplings are invariant under the extra U(1)U(1) local gauge group, these contributions can be eliminated by redefining the gauge boson fields through eliminating the neutral currents involving charged leptons, even with nonzero kinetic mixing effects.Comment: 11 pages, 2 figure
    • …
    corecore