2,605 research outputs found
A STUDY OF FEATURE SETS FOR EMOTION RECOGNITION FROM SPEECH SIGNALS
This thesis focuses on finding useful features for emotion recognition from speech signals. In comparison to the popular openSMILE “emobase” feature set, our proposed method reduced the size of feature space to about 28% yet boosted the recognition rate by 3.3%.
Given we are at a point technologically where computing is cheap and fast, and lots of data are available, the approach to solving all sorts of problems is based on sophisticated machine learning techniques to implicitly make sense of data. Yet in this work, we study particular features that are felt to correlate with changes in emotion but have not been commonly selected for emotion recognition tasks. Jitter, shimmer, breathiness, and speaking rate are analyzed and are found to systematically change as a function of emotion.
We not only explore these additional acoustic features that help improve the classification performance, but also try to understand the importance of the existing features in improving accuracy. Our results show that using our features together with MFCCs and pitch related features lead to a better performance
Serum ferritin levels and polycystic ovary syndrome in obese and nonobese women
AbstractObjectiveThe aim of this study is to evaluate serum ferritin levels and polycystic ovary syndrome (PCOS)-related complications in obese and nonobese women.Materials and methodsThis retrospective study included 539 (286 with PCOS and 253 without PCOS).ResultsSerum ferritin correlated with menstrual cycle length, sex hormone-binding globulin, total testosterone, androstenedione, triglyceride, and total cholesterol in both obese and nonobese women. Obese women with high ferritin levels exhibited higher insulin resistance, impaired glucose tolerance, and liver enzymes (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase) than obese women with low ferritin levels. However, among nonobese women, insulin resistance and risk of diabetes were not significantly different between the high and low ferritin groups. Independent of obesity, hypertriglyceridemia was the major metabolic disturbance observed in women with elevated serum ferritin levels.ConclusionElevated serum ferritin levels are associated with increased insulin resistance and risk of diabetes in obese women but not in nonobese women. However, higher serum ferritin levels were correlated with a greater risk of hyperglyceridemia in both obese and nonobese women. Therefore, hypertriglyceridemia in women with PCOS might be associated with iron metabolism
Capacity to Adapt to Temperature Effects on Crop Yields: Evidence from Rice Production in Japan
2021.11/2022.03改
Device Integrity of Drug-eluting Depot Stent for Smart Drug Delivery
Atherosclerosis, or hardening of the arteries, is a condition in which plaque, made of cholesterol, fatty substances, cellular waste products, calcium, and fibrin, builds up inside the arteries. A metallic stent is a small mesh tube that is used to treat these narrowed arteries such as coronary artery diseases. The drug-eluting stent has a metallic stent platform coated with drug-polymer mix and has been shown to be superior to its metallic stent counterpart in reducing restenosis. In the past few years, a novel variation of the drug-eluting stent with micro-sized drug reservoirs (depot stent) has been introduced to the market. It allows smart programmable drug delivery with spatial/temporal control and has potential advantages over conventional stents. The drug-polymer mix compound can be altered from one reservoir to the next, allowing a highly-controlled release of different medications. For example, this depot stent concept can be applied in the renal indication for potential treatment of both renal artery stenosis (upstream) and its associated kidney diseases (downstream) simultaneously. However, the creation of such drug reservoirs on the stent struts inevitably compromises its mechanical integrity. In this study, the effects of these drug reservoirs on stent key clinical attributes were systematically investigated. We developed finite element models to predict the mechanical integrity of a balloon-expandable stent at various stages of its function life such as manufacturing and acute deployment, as well as the stent radial strength and chronic fatigue life. Simulation results show that (1) creating drug reservoirs on a stent strut could impact the stent fatigue resistance to certain degrees; (2) drug reservoirs on the high stress concentration regions led to much greater loss in all key clinical attributes than reservoirs on other locations; (3) reservoir shape change resulted in little differences in all key clinical attributes; and (4) for the same drug loading capacity, larger and fewer reservoirs yielded higher fatigue safety factor. These results can help future stent designers to achieve the optimal balance of stent mechanical integrity and smart drug delivery, thereby opening up a wide variety of new opportunities for disease treatments. We also proposed an optimized depot stent with tripled drug capacity and acceptable marginal trade-off in key clinical attributes when compared to the current drug-eluting stents. This depot stent prototype was manufactured for the demonstration of our design concept
Genotoxic Klebsiella pneumoniae in Taiwan
Colibactin is a nonribosomal peptide-polyketide synthesized by multi-enzyme complexes encoded by the pks gene cluster. Colibactin-producing Escherichia coli have been demonstrated to induce host DNA damage and promote colorectal cancer (CRC) development. In Taiwan, the occurrence of pyogenic liver abscess (PLA) has been suggested to correlate with an increasing risk of CRC, and Klebsiella pneumoniae is the predominant PLA pathogen in Taiwan
Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats
Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral artery for 15 min, followed by reperfusion, and PF was administered 24 hr later (20 mg/kg, intraperitoneally for 6 days) after reperfusionResults: Treatment with PF reduced the neurological deficit score, improved motor function, decreased cell counts of nicotinic acetylcholine receptor (nAChR) α4β2 immunoreactive cells, and increased cell counts of nAChR α7. Furthermore, PF administration suppressed neuronal apoptosis and promoted neurogenesis.Conclusion: PF rescued neurological deficit and underlying mechanisms were inhibition of neurological apoptosis and inflammation by nAChRs
Associations of exposure to noise with physiological and psychological outcomes among post‐cardiac surgery patients in ICUs
OBJECTIVES: This study sought to study the associations of noise with heart rate, blood pressure, and perceived psychological and physiological responses among post-cardiac surgery patients in ICUs. METHODS: Forty patients participated in this study after recovering from anesthesia. A sound-level meter was placed at bedsides to measure noise level for 42 hours, and patients' heart rate and blood pressure were recorded every 5 minutes. Patients were also interviewed for their perceived psychological/physiological responses. RESULTS: The average noise level was between 59.0 and 60.8 dB(A) at the study site. Annoyance and insomnia were the respective psychological and physiological responses reported most often among the patients. Although noise level, irrespective of measures, was not observed to be significantly associated with the self-assessed psychological and physiological responses, it was significantly associated with both heart rate and blood pressure. CONCLUSIONS: Our study demonstrated that the noise in ICUs may adversely affect the heart rate and blood pressure of patients, which warrants the attention of hospital administrators and health care workers
Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes
A low-temperature, direct blending procedure was used to prepare composite films consisting of zinc oxide [ZnO] nanoparticles and multiwalled carbon nanotubes [MWNTs]. The mesoporous ZnO/MWNT films were fabricated into the working electrodes of dye-sensitized solar cells [DSSCs]. The pristine MWNTs were modified by an air oxidation or a mixed acid oxidation treatment before use. The mixed acid treatment resulted in the disentanglement of MWNTs and facilitated the dispersion of MWNTs in the ZnO matrix. The effects of surface property and loading of MWNTs on DSSC performance were investigated. The performance of DSSCs was found to depend greatly on the type and the amount of MWNTs incorporated. At a loading of 0.01 wt%, the acid-treated MWNTs were able to increase the power conversion efficiency of fabricated cells from 2.11% (without MWNTs) to 2.70%
- …