17 research outputs found

    PFMDR1 AND IN VIVO RESISTANCE TO ARTESUNATE-MEFLOQUINE IN FALCIPARUM MALARIA ON THE CAMBODIAN–THAI BORDER

    Get PDF
    Artemisinin combination therapies (ACTs) have recently been adopted as first-line therapy for Plasmodium falciparum infections in most malaria-endemic countries. In this study, we estimated the association between artesunate-mefloquine therapy failure and genetic changes in the putative transporter, pfmdr1. Blood samples were acquired from 80 patients enrolled in an 2004 in vivo efficacy study in Pailin, Cambodia, and genotyped for pfmdr1 copy number and haplotype. Having parasites with three or more copies of pfmdr1 before treatment was strongly associated with recrudescence (hazard ratio [HR] = 8.30; 95% CI: 2.60–26.43). This relationship was maintained when controlling for initial parasite density and hematocrit (HR = 7.91; 95% CI: 2.38–26.29). Artesunate-mefloquine treatment selected for increased pfmdr1 copy number, because isolates from recurrent episodes had higher copy numbers than the paired enrollment samples (Wilcoxon rank test, P = 0.040). pfmdr1 copy number should be evaluated further as a surveillance tool for artesunate-mefloquine resistance in Cambodia

    Artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. METHODS: In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. RESULTS: We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. CONCLUSIONS: P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.

    Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemisinin resistance in <it>Plasmodium falciparum </it>malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates.</p> <p>Results</p> <p>In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC). In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the <it>P. falciparum </it>intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype.</p> <p>Conclusions</p> <p>The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis of pathogens with drug resistance phenotypes <it>in vivo</it>.</p

    Pyronaridine-Artesunate versus Chloroquine in Patients with Acute Plasmodium vivax Malaria: A Randomized, Double-Blind, Non-Inferiority Trial

    Get PDF
    BACKGROUND: New antimalarials are needed for P. vivax and P. falciparum malaria. This study compared the efficacy and safety of pyronaridine-artesunate with that of chloroquine for the treatment of uncomplicated P. vivax malaria. METHODS AND FINDINGS: This phase III randomized, double-blind, non-inferiority trial included five centers across Cambodia, Thailand, India, and Indonesia. In a double-dummy design, patients (aged >3-≤ 60 years) with microscopically confirmed P. vivax mono-infection were randomized (1:1) to receive pyronaridine-artesunate (target dose 7.2:2.4 mg/kg to 13.8:4.6 mg/kg) or chloroquine (standard dose) once daily for three days. Each treatment group included 228 randomized patients. Outcomes for the primary endpoint, Day-14 cure rate in the per-protocol population, were 99.5%, (217/218; 95%CI 97.5, 100) with pyronaridine-artesunate and 100% (209/209; 95%CI 98.3, 100) with chloroquine. Pyronaridine was non-inferior to chloroquine: treatment difference -0.5% (95%CI -2.6, 1.4), i.e., the lower limit of the 2-sided 95%CI for the treatment difference was greater than -10%. Pyronaridine-artesunate cure rates were non-inferior to chloroquine for Days 21, 28, 35 and 42. Parasite clearance time was shorter with pyronaridine-artesunate (median 23.0 h) versus chloroquine (32.0 h; p<0.0001), as was fever clearance time (median 15.9 h and 23.8 h, respectively; p = 0.0017). Kaplan-Meier estimates of post-baseline P. falciparum infection incidence until Day 42 were 2.5% with pyronaridine-artesunate, 6.1% with chloroquine (p = 0.048, log-rank test). Post-baseline P. vivax or P. falciparum infection incidence until Day 42 was 6.8% and 12.4%, respectively (p = 0.022, log rank test). There were no deaths. Adverse events occurred in 92/228 (40.4%) patients with pyronaridine-artesunate and 72/228 (31.6%) with chloroquine. Mild and transient increases in hepatic enzymes were observed for pyronaridine-artesunate. CONCLUSION: Pyronaridine-artesunate efficacy in acute uncomplicated P. vivax malaria was at least that of chloroquine. As pyronaridine-artesunate is also efficacious against P. falciparum malaria, this combination has potential utility as a global antimalarial drug. TRIAL REGISTRATION: Clinicaltrials.gov NCT00440999

    Spread of artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS: The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS: Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.)

    Pyronaridine-Artesunate Versus Mefloquine Plus Artesunate for Malaria.

    No full text
    \ud \ud Pyronaridine-artesunate is an artemisinin-based combination therapy under evaluation for the treatment of Plasmodium falciparum and P. vivax malaria. We conducted a phase 3, open-label, multicenter, noninferiority trial that included 1271 patients between 3 and 60 years of age from Asia (81.3%) or Africa (18.7%) with microscopically confirmed, uncomplicated P. falciparum malaria. Patients underwent randomization for treatment with a fixed-dose combination of 180 mg of pyronaridine and 60 mg of artesunate or with 250 mg of mefloquine plus 100 mg of artesunate. Doses were calculated according to body weight and administered once daily for 3 days. Pyronaridine-artesunate was noninferior to mefloquine plus artesunate for the primary outcome: adequate clinical and parasitologic response in the per-protocol population on day 28, corrected for reinfection with the use of polymerase-chain-reaction (PCR) genotyping. For this outcome, efficacy in the group receiving pyronaridine-artesunate was 99.2% (743 of 749 patients; 95% confidence interval [CI], 98.3 to 99.7) and that in the group receiving mefloquine plus artesunate was 97.8% (360 of 368 patients; 95% CI, 95.8 to 99.1), with a treatment difference of 1.4 percentage points (95% CI, 0.0 to 3.5; P=0.05). In the intention-to-treat population, efficacy on day 42 in the group receiving pyronaridine-artesunate was 83.1% (705 of 848 patients; 95% CI, 80.4 to 85.6) and that in the group receiving mefloquine plus artesunate was 83.9% (355 of 423 patients; 95% CI, 80.1 to 87.3). In Cambodia, where there were 211 study patients, the median parasite clearance time was prolonged for both treatments: 64 hours versus 16.0 to 38.9 hours in other countries (P<0.001, on the basis of Kaplan-Meier estimates). Kaplan-Meier estimates of the recrudescence rate in the intention-to-treat population in Cambodia until day 42 were higher with pyronaridine-artesunate than with mefloquine plus artesunate (10.2% [95% CI, 5.4 to 18.6] vs. 0%; P=0.04 as calculated with the log-rank test), but similar for the other countries combined (4.7% [95% CI, 3.3 to 6.7] and 2.8% [95% CI, 1.5 to 5.3], respectively; P=0.24). Elevated levels of aminotransferases were observed in those receiving pyronaridine-artesunate. Two patients receiving mefloquine plus artesunate had seizures. Fixed-dose pyronaridine-artesunate was efficacious in the treatment of uncomplicated P. falciparum malaria. In Cambodia, extended parasite clearance times were suggestive of in vivo resistance to artemisinin. (Funded by Shin Poong Pharmaceutical Company and the Medicines for Malaria Venture; ClinicalTrials.gov number, NCT00403260.)

    BME academics in higher education: policy and inclusion

    Get PDF
    Abstract Background The combination of artesunate and mefloquine was introduced as the national first-line treatment for Plasmodium falciparum malaria in Cambodia in 2000. However, recent clinical trials performed at the Thai-Cambodian border have pointed to the declining efficacy of both artesunate-mefloquine and artemether-lumefantrine. Since pfmdr1 modulates susceptibility to mefloquine and artemisinin derivatives, the aim of this study was to assess the link between pfmdr1 copy number, in vitro susceptibility to individual drugs and treatment failure to combination therapy. Methods Blood samples were collected from P. falciparum-infected patients enrolled in two in vivo efficacy studies in north-western Cambodia: 135 patients were treated with artemether-lumefantrine (AL group) in Sampovloun in 2002 and 2003, and 140 patients with artesunate-mefloquine (AM group) in Sampovloun and Veal Veng in 2003 and 2004. At enrollment, the in vitro IC50 was tested and the strains were genotyped for pfmdr1 copy number by real-time PCR. Results The pfmdr1 copy number was analysed for 115 isolates in the AM group, and for 109 isolates in the AL group. Parasites with increased pfmdr1 copy number had significantly reduced in vitro susceptibility to mefloquine, lumefantrine and artesunate. There was no association between pfmdr1 polymorphisms and in vitro susceptibilities. In the patients treated with AM, the mean pfmdr1copy number was lower in subjects with adequate clinical and parasitological response compared to those who experienced late treatment failure (n = 112, p < 0.001). This was not observed in the patients treated with AL (n = 96, p = 0.364). The presence of three or more copies of pfmdr1 were associated with recrudescence in artesunate-mefloquine treated patients (hazard ratio (HR) = 7.80 [95%CI: 2.09–29.10], N = 115), p = 0.002) but not with recrudescence in artemether-lumefantrine treated patients (HR = 1.03 [95%CI: 0.24–4.44], N = 109, p = 0.969). Conclusion This study shows that pfmdr1 copy number is a molecular marker of AM treatment failure in falciparum malaria on the Thai-Cambodian border. However, while it is associated with increased IC50 for lumefantrine, pfmdr1 copy number is not associated with AL treatment failure in the area, suggesting involvement of other molecular mechanisms in AL treatment failures in Cambodia

    Exploring the Contribution of Candidate Genes to Artemisinin Resistance in Plasmodium falciparum▿

    No full text
    The reduced in vivo sensitivity of Plasmodium falciparum has recently been confirmed in western Cambodia. Identifying molecular markers for artemisinin resistance is essential for monitoring the spread of the resistant phenotype and identifying the mechanisms of resistance. Four candidate genes, including the P. falciparum mdr1 (pfmdr1) gene, the P. falciparum ATPase6 (pfATPase6) gene, the 6-kb mitochondrial genome, and ubp-1, encoding a deubiquitinating enzyme, of artemisinin-resistant P. falciparum strains from western Cambodia were examined and compared to those of sensitive strains from northwestern Thailand, where the artemisinins are still very effective. The artemisinin-resistant phenotype did not correlate with pfmdr1 amplification or mutations (full-length sequencing), mutations in pfATPase6 (full-length sequencing) or the 6-kb mitochondrial genome (full-length sequencing), or ubp-1 mutations at positions 739 and 770. The P. falciparum CRT K76T mutation was present in all isolates from both study sites. The pfmdr1 copy numbers in western Cambodia were significantly lower in parasite samples obtained in 2007 than in those obtained in 2005, coinciding with a local change in drug policy replacing artesunate-mefloquine with dihydroartemisinin-piperaquine. Artemisinin resistance in western Cambodia is not linked to candidate genes, as was suggested by earlier studies
    corecore