17,388 research outputs found

    The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores

    Full text link
    We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper (Knebe et al 2011) has shown Rockstar to have class-leading recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery as compared to several other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results which demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or satellite average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 350 km/s at z=0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar .Comment: 20 pages, 14 figures. Minor revisions to match accepted versio

    Effects of uncertainties and errors on Lyapunov control

    Full text link
    Lyapunov control (open-loop) is often confronted with uncertainties and errors in practical applications. In this paper, we analyze the robustness of Lyapunov control against the uncertainties and errors in quantum control systems. The analysis is carried out through examinations of uncertainties and errors, calculations of the control fidelity under influences of the certainties and errors, as well as discussions on the caused effects. Two examples, a closed control system and an open control system, are presented to illustrate the general formulism.Comment: 4 pages, 5 figure

    Experimentally realizable control fields in quantum Lyapunov control

    Full text link
    As a hybrid of techniques from open-loop and feedback control, Lyapunov control has the advantage that it is free from the measurement-induced decoherence but it includes the system's instantaneous message in the control loop. Often, the Lyapunov control is confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time-delay on the Lyapunov control, and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the controlled system. These results suggest that the Lyapunov control is robust gainst time delay, easy to realize and effective for high-dimensional quantum systems
    corecore