39,905 research outputs found

    Spontaneous spin textures in dipolar spinor condensates

    Full text link
    We have mapped out a detailed phase diagram that shows the ground state structure of a spin-1 condensate with magnetic dipole-dipole interactions. We show that the interplay between the dipolar and the spin-exchange interactions induces a rich variety of quantum phases that exhibit spontaneous magnetic ordering in the form of intricate spin textures.Comment: 4.1 pages, 4 figure

    Mixed Qubit Cannot Be Universally Broadcast

    Get PDF
    We show that there does not exist any universal quantum cloning machine that can broadcast an arbitrary mixed qubit with a constant fidelity. Based on this result, we investigate the dependent quantum cloner in the sense that some parameter of the input qubit ρs(θ,ω,λ)\rho_s(\theta,\omega,\lambda) is regarded as constant in the fidelity. For the case of constant ω\omega, we establish the 121\to2 optimal symmetric dependent cloner with a fidelity 1/2. It is also shown that the 1M1\to M optimal quantum cloning machine for pure qubits is also optimal for mixed qubits, when λ\lambda is the unique parameter in the fidelity. For general NMN\to M broadcasting of mixed qubits, the situation is very different.Comment: 5 pages, Revte

    Simultaneous eigenstates of the number-difference operator and a bilinear interaction Hamiltonian derived by solving a complex differential equation

    Full text link
    As a continuum work of Bhaumik et al who derived the common eigenvector of the number-difference operator Q and pair-annihilation operator ab (J. Phys. A9 (1976) 1507) we search for the simultaneous eigenvector of Q and (ab-a^{+}b^{+}) by setting up a complex differential equation in the bipartite entangled state representation. The differential equation is then solved in terms of the two-variable Hermite polynomials and the formal hypergeometric functions. The work is also an addendum to Mod. Phys. Lett. A 9 (1994) 1291 by Fan and Klauder, in which the common eigenkets of Q and pair creators are discussed

    Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    Full text link
    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.Comment: 4 pages, 5 figure

    Suppression of ferromagnetic ordering in doped manganites: Effects of the superexchange interaction

    Full text link
    From a Monte Carlo study of the ferromagnetic Kondo lattice model for doped manganites, including the antiferromagnetic superexchange interaction (JAFJ_{AF}), we found that the ferromagnetic ordering was suppressed as JAFJ_{AF} increased. The ferromagnetic transition temperature TcT_c, as obtained from a mean field fit to the calculated susceptibilities, was found to decrease monotonically with increasing JAFJ_{AF}. Further, the suppression in TcT_c scales with the bandwidth narrowing induced by the antiferromagnetic frustration originating from JAFJ_{AF}. From these results, we propose that the change in the superexchange interaction strength between the t2gt_{2g} electrons of the Mn ions is one of the mechanisms responsible for the suppression in TcT_c observed in manganites of the type (La0.7y_{0.7-y}Pry_{y})Ca0.3_{0.3}MnO3_3.Comment: 5 pages, 6 figures. To appear in PR

    Energy average formula of photon gas rederived by using the generalized Hermann-Feynman theorem

    Full text link
    By virtue of the generalized Hermann-Feynmam theorem and the method of characteristics we rederive energy average formula of photon gas, this is another useful application of the theorem.Comment: 2 page
    corecore