28,073 research outputs found

    Fermi Variability Study of the Candidate Pulsar Binary 2FGL~J0523.3-2530

    Get PDF
    The Fermi source 2FGL~J0523.3−-2530 has recently been identified as a candidate millisecond pulsar binary with an orbital period of 16.5 hrs. We have carried out detailed studies of the source's emission properties by analyzing data taken with the Fermi Large Area Telescope in the 0.2--300 GeV energy range. Long-term, yearly variability from the source has been found, with a factor of 4 flux variations in 1--300 GeV. From spectral analysis, we find an extra spectral component at 2--3 GeV that causes the source brightening. While no orbital modulations have been found from the Fermi data over the whole period of 2008--2014, orbital modulation in the source's >>2 GeV emission is detected during the last 1.5 yrs of the Fermi observation. Our results support the millisecond pulsar binary nature of 2FGL~J0523.3−-2530. Multi-wavelength observations of the source are warranted in order to find any correlated flux variations and thus help determine the origin of the long-term variability, which currently is not understood.Comment: 8 pages, 5 figures, comments from Referee were incorporated, accepted for publication in Ap

    Geometric phase in dephasing systems

    Full text link
    Beyond the quantum Markov approximation, we calculate the geometric phase of a two-level system driven by a quantized magnetic field subject to phase dephasing. The phase reduces to the standard geometric phase in the weak coupling limit and it involves the phase information of the environment in general. In contrast with the geometric phase in dissipative systems, the geometric phase acquired by the system can be observed on a long time scale. We also show that with the system decohering to its pointer states, the geometric phase factor tends to a sum over the phase factors pertaining to the pointer states.Comment: 4 page

    Consistent picture for the electronic structure around a vortex core in iron-based superconductors

    Full text link
    Based on a two-orbital model and taking into account the presence of the impurity, we studied theoretically the electronic structure in the vortex core of the iron-Pnictide superconducting materials. The vortex is pinned when the impurity is close to the vortex core. The bound states shows up for the unpinned vortex and are wiped out by a impurity. Our results are in good agreement with recent experiments and present a consistent explanation for the different electronic structure of vortex core revealed by experiments on different materials.Comment: 4 pages, 5 figure

    Dissipation Effects in Hybrid Systems

    Get PDF
    The dissipation effect in a hybrid system is studied in this Letter. The hybrid system is a compound of a classical magnetic particle and a quantum single spin. Two cases are considered. In the first case, we investigate the effect of the dissipative quantum subsystem on the motion of its classical partner. Whereas in the second case we show how the dynamics of the quantum single spin are affected by the dissipation of the classical particle. Extension to general dissipative hybrid systems is discussed.Comment: 4+ pages, 4 figure
    • 

    corecore