7,114 research outputs found

    Dependence of Temporal Properties on Energy in Long-Lag, Wide-Pulse Gamma-Ray Bursts

    Full text link
    We employed a sample compiled by Norris et al. (2005, ApJ, 625, 324) to study the dependence of the pulse temporal properties on energy in long-lag, wide-pulse gamma-ray bursts. Our analysis shows that the pulse peak time, rise time scale and decay time scale are power law functions of energy, which is a preliminary report on the relationships between the three quantities and energy. The power law indexes associated with the pulse width, rise time scale and decay time scale are correlated and the correlation between the indexes associated with the pulse width and the decay time scale is more obvious. In addition, we have found that the pulse peak lag is strongly correlated with the CCF lag, but the centroid lag is less correlated with the peak lag and CCF lag. Based on these results and some previous investigations, we tend to believe that all energy-dependent pulse temporal properties may come from the joint contribution of both the hydrodynamic processes of the outflows and the curvature effect, where the energy-dependent spectral lag may be mainly dominated by the dynamic process and the energy-dependent pulse width may be mainly determined by the curvature effect.Comment: 20 pages, 7 figures, added references, matched to published version, accepted for publication in PAS

    Method of determining cosmological parameter ranges with samples of candles with an intrinsic distribution

    Full text link
    In this paper, the effect of the intrinsic distribution of cosmological candles is investigated. We find that, in the case of a narrow distribution, the deviation of the observed modulus of sources from the expected central value could be estimated within a ceratin range. We thus introduce a lower and upper limits of χ2\chi ^{2}, χmin2\chi_{\min}^{2} and χmax2 \chi_{\max}^{2}, to estimate cosmological parameters by applying the conventional minimizing χ2\chi ^{2} method. We apply this method to a gamma-ray burst (GRB) sample as well as to a combined sample including this GRB sample and an SN Ia sample. Our analysis shows that: a) in the case of assuming an intrinsic distribution of candles of the GRB sample, the effect of the distribution is obvious and should not be neglected; b) taking into account this effect would lead to a poorer constraint of the cosmological parameter ranges. The analysis suggests that in the attempt of constraining the cosmological model with current GRB samples, the results tend to be worse than what previously thought if the mentioned intrinsic distribution does exist.Comment: 6 pages,4 figures,1 tables.Data updated. Main conclusion unchange

    Characteristics of profiles of gamma-ray burst pulses associated with the Doppler effect of fireballs

    Full text link
    In this paper, we derive in a much detail the formula of count rates, in terms of the integral of time, of gamma-ray bursts in the framework of fireballs, where the Doppler effect of the expanding fireball surface is the key factor to be concerned. Effects arising from the limit of the time delay due to the limited regions of the emitting areas in the fireball surface and other factors are investigated. Our analysis shows that the formula of the count rate of fireballs can be expressed as a function of τ\tau which is the observation time scale relative to the dynamical time scale of the fireball. The profile of light curves of fireballs depends only on the relative time scale, entirely independent of the real time scale and the real size of the objects. It displays in detail how a cutoff tail, or a turn over, feature (called a cutoff tail problem) in the decay phase of a light curve can be formed. This feature is a consequence of a hot spot in the fireball surface, moving towards the observer, and was observed in a few cases previously. By performing fits to the count rate light curves of six sample sources, we show how to obtain some physical parameters from the observed profile of the count rate of GRBs. In addition, the analysis reveals that the Doppler effect of fireballs could lead to a power law relationship between the FWHMFWHM of pulses and energy, which were observed previously by many authors.Comment: 38 pages, 10 figures; accepted for publication in ApJ (10 December 2004, v617

    Quantum Robot: Structure, Algorithms and Applications

    Full text link
    A kind of brand-new robot, quantum robot, is proposed through fusing quantum theory with robot technology. Quantum robot is essentially a complex quantum system and it is generally composed of three fundamental parts: MQCU (multi quantum computing units), quantum controller/actuator, and information acquisition units. Corresponding to the system structure, several learning control algorithms including quantum searching algorithm and quantum reinforcement learning are presented for quantum robot. The theoretic results show that quantum robot can reduce the complexity of O(N^2) in traditional robot to O(N^(3/2)) using quantum searching algorithm, and the simulation results demonstrate that quantum robot is also superior to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. Considering the advantages of quantum robot, its some potential important applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table

    Theoretical Study for Detection of Defects in Weakly Absorbing Samples by Crossed-Beam Photothermal Technique

    Get PDF
    The photothermal techniques have been successfully applied as tools for nondestructive evaluation (NDE) of inhomogeneous materials. For optically opaque samples, photothermal techniques are widely used for detection and characterization of subsurface defects and interfaces within the samples [1,2]. For optically transparent samples, photothermal techniques are used for absorption mapping of thin films deposited on optical substrates [3], biological and medical samples [4 ]. Due to nondestructive micro-analyses is very important for studies of thin films and interfaces, as well as biological, and medical samples. Photothermal techniques with two crossed-beams are developed for highly spatially resolved detection, in which the excitation and probe beams interact only in the intersection volume, therefore very high spatial resolution in three dimensions can be achieved by tightly focusing both beams. Highly resolved depth profiling of weakly absorbing samples can be achieved with the photothermal crossed-beam techniques by scanning either the samples or the intersection point of both beams along the depth direction. The optical absorbency or thermal conductivity inhomogeneities of small, localized regions within larger samples can be detected by the technique. In this paper the theoretical investigation on the depthprofiling capability of the crossed-beam photothermal deflection (PTD) is described in detail. The theoretical results provide quantitative evaluation for depth-profiling capability of weakly absorbing samples with crossed-beam photothermal techniques

    RIS-Assisted Self-Interference Mitigation for In-Band Full-Duplex Transceivers

    Full text link
    The wireless in-band full-duplex (IBFD) technology can in theory double the system capacity over the conventional frequency division duplex (FDD) or time-division duplex (TDD) alternatives. But the strong self-interference of the IBFD can cause excessive quantization noise in the analog-to-digital converters (ADC), which represents the hurdle for its real implementation. In this paper, we consider employing a reconfigurable intelligent surface (RIS) for IBFD communications. While the BS transmits and receives the signals to and from the users simultaneously on the same frequency band, it can adjust the reflection coefficients of the RIS to configure the wireless channel so that the self-interference of the BS is sufficiently mitigated in the propagation domain. Taking the impact of the quantization noise into account, we propose to jointly design the downlink (DL) precoding matrix and the RIS coefficients to maximize the sum of uplink (UL) and DL rates. The effectiveness of the proposed RIS-assisted in-band full-duplex (RAIBFD) system is verified by simulation studies, even taking into considerations that the phases of the RIS have only finite resolution.Comment: 11 page
    corecore