170 research outputs found

    Early Afterglows of Gamma-Ray Bursts in a Stratified Medium with a Power-Law Density Distribution

    Full text link
    A long-duration gamma-ray burst (GRB) has been widely thought to arise from the collapse of a massive star, and it has been suggested that its ambient medium is a homogenous interstellar medium (ISM) or a stellar wind. There are two shocks when an ultra-relativistic fireball that has been ejected during the prompt gamma-ray emission phase sweeps up the circumburst medium: a reverse shock that propagates into the fireball, and a forward shock that propagates into the ambient medium. In this paper, we investigate the temporal evolution of the dynamics and emission of these two shocks in an environment with a general density distribution of n∝Rβˆ’kn\propto R^{-k} (where RR is the radius) by considering thick-shell and thin-shell cases. A GRB afterglow with one smooth onset peak at early times is understood to result from such external shocks. Thus, we can determine the medium density distribution by fitting the onset peak appearing in the light curve of an early optical afterglow. We apply our model to 19 GRBs, and find that their kk values are in the range of 0.4 - 1.4, with a typical value of k∼1k\sim1, implying that this environment is neither a homogenous interstellar medium with k=0k=0 nor a typical stellar wind with k=2k=2. This shows that the progenitors of these GRBs might have undergone a new mass-loss evolution.Comment: 32 pages, 5 figures, 1 table, published in Ap

    Higher-order properties and Bell-inequality violation for the three-mode enhanced squeezed state

    Full text link
    By extending the usual two-mode squeezing operator S2=exp⁑[iλ(Q1P2+Q2P1)]S_{2}=\exp [ i\lambda (Q_{1}P_{2}+Q_{2}P_{1}) ] to the three-mode squeezing operator S3=exp⁑iλ[Q1(P2+P3)+Q2(P1+P3)+Q3(P1+P2)]S_{3}=\exp {i\lambda [ Q_{1}(P_{2}+P_{3}) +Q_{2}(P_{1}+P_{3}) +Q_{3}(P_{1}+P_{2}) ]} , we obtain the corresponding three-mode squeezed coherent state. The state's higher-order properties, such as higher-order squeezing and higher-order sub-Possonian photon statistics, are investigated. It is found that the new squeezed state not only can be squeezed to all even orders but also exhibits squeezing enhancement comparing with the usual cases. In addition, we examine the violation of Bell-inequality for the three-mode squeezed states by using the formalism of Wigner representation
    • …
    corecore