1,616 research outputs found

    Exact solutions to the time-dependent supersymmetric muliphoton Jaynes-Cummings model and the Chiao-Wu model

    Full text link
    By using both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transformation formulation, the present paper obtains the exact solutions to the time-dependent supersymmetric two-level multiphoton Jaynes-Cummings model and the Chiao-Wu model that describes the propagation of a photon inside the optical fiber. On the basis of the fact that the two-level multiphoton Jaynes-Cummings model possesses the supersymmetric structure, an invariant is constructed in terms of the supersymmetric generators by working in the sub-Hilbert-space corresponding to a particular eigenvalue of the conserved supersymmetric generators (i.e., the time-independent invariant). By constructing the effective Hamiltonian that describes the interaction of the photon with the medium of the optical fiber, it is further verified that the particular solution to the Schr\"{o}dinger equation is the eigenfunction of the second-quantized momentum operator of photons field. This, therefore, means that the explicit expression (rather than the hidden form that involves the chronological product) for the time-evolution operator of wave function is obtained by means of the invariant theories.Comment: 14 pages, Latex. This is a revised version of the published paper: Shen J Q, Zhu H Y 2003 Ann. Phys.(Leipzig) Vol.12 p.131-14

    A unified approach to exact solutions of time-dependent Lie-algebraic quantum systems

    Full text link
    By using the Lewis-Riesenfeld theory and the invariant-related unitary transformation formulation, the exact solutions of the {\it time-dependent} Schr\"{o}dinger equations which govern the various Lie-algebraic quantum systems in atomic physics, quantum optics, nuclear physics and laser physics are obtained. It is shown that the {\it explicit} solutions may also be obtained by working in a sub-Hilbert-space corresponding to a particular eigenvalue of the conserved generator ({\it i. e.}, the {\it time-independent} invariant) for some quantum systems without quasi-algebraic structures. The global and topological properties of geometric phases and their adiabatic limit in time-dependent quantum systems/models are briefly discussed.Comment: 11 pages, Latex. accepted by Euro. Phys. J.

    Gravitomagnetic Field and Time-Dependent Spin-Rotation Coupling

    Get PDF
    The Kerr metric of spherically symmetric gravitational field is analyzed through the coordinate transformation from the rotating frame to fixing frame, and consequently that the inertial force field (with the exception of the centrifugal force field) in the rotating system is one part of its gravitomagnetic field is verified. We investigate the spin-rotation coupling and, by making use of Lewis-Riesenfeld invariant theory, we obtain exact solutions of the Schr\"{o}dinger equation of a spinning particle in a time-dependent rotating reference frame. A potential application of these exact solutions to the investigation of Earth,^{,}s rotating frequency fluctuation by means of neutron-gravity interferometry experiment is briefly discussed in the present paper.Comment: 6 pages, 0 figures, Late

    Precision measurement of charge number with optomechanically induced transparency

    Full text link
    We propose a potentially practical scheme to precisely measure the charge numbers of small charged objects by optomechanical systems using optomechanically induced transparency (OMIT). In contrast to the conventional measurements based on the noise backaction on the optomechanical systems, our scheme makes use of the small deformation of the mechanical resonator sensitive to the charge number of the nearby charged object, which could achieve the detection of a single charge. The relationship between the charge number and the window width of the OMIT is investigated and the feasibility of the scheme is justified by numerical simulation using currently available experimental values.Comment: 6 pages,4 figure

    Tunable Frequency Comb Generation from a Microring with a Thermal Heater

    Full text link
    We demonstrate a novel comb tuning method for microresonator-based Kerr comb generators. Continuously tunable, low-noise, and coherent comb generation is achieved in a CMOS-compatible silicon nitride microring resonator.Comment: submitted to CLEO201

    Thickness dependence of superconductivity and superconductor-insulator transition in ultrathin FeSe films on SrTiO3(001) substrate

    Full text link
    Interface-enhanced high-temperature superconductivity in one unit-cell (UC) FeSe film on SrTiO3(001) (STO) substrate has recently attracted much attention in condensed matter physics and material science. Here, by ex situ transport measurements, we report on the superconductivity in FeSe ultra-thin films with different thickness on STO substrate. We find that the onset superconducting transition temperature (Tc) decreases with increasing film thickness of FeSe, which is opposite to the behavior usually observed in traditional superconductor films. By systematic post-annealing of 5 UC FeSe films, we observe an insulator to superconductor transition, which is accompanied with a sign change of the dominated charge carriers from holes to electrons at low temperatures according to the corresponding Hall measurement
    • …
    corecore