4,170 research outputs found

    Probing triple-Higgs productions via 4b2γ4b2\gamma decay channel at a 100 TeV hadron collider

    Full text link
    The quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the Large Hadron Collider (LHC) Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel HHH→bbˉbbˉγγHHH\rightarrow b\bar{b}b\bar{b}\gamma\gamma, investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8×1041.8\times 10^4 ab−1^{-1}. We also explore the dependence of the cross section upon the trilinear (λ3\lambda_3) and quartic (λ4\lambda_4) self-couplings of the Higgs. We find that, through a search in the triple-Higgs production, the parameters λ3\lambda_3 and λ4\lambda_4 can be restricted to the ranges [−1,5][-1, 5] and [−20,30][-20, 30], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O(10)\mathcal{O}(10).Comment: 33 pages, 11 figures, added references, corrected typos, improved text, affiliation is changed. This is the publication versio

    Quantum imaginary time evolution and quantum annealing meet topological sector optimization

    Full text link
    Optimization problems are the core challenge in many fields of science and engineering, yet general and effective methods are scarce for searching optimal solutions. Quantum computing has been envisioned to help solve such problems, for example, the quantum annealing (QA) method based on adiabatic evolution has been extensively explored and successfully implemented on quantum simulators such as D-wave's annealers and some Rydberg arrays. In this work, we investigate topological sector optimization (TSO) problem, which attracts particular interests in the quantum many-body physics community. We reveal that the topology induced by frustration in the spin model is an intrinsic obstruction for QA and other traditional methods to approach the ground state. We demonstrate that the optimization difficulties of TSO problem are not restricted to the gaplessness, but are also due to the topological nature which are often ignored for the analysis of optimization problems before. To solve TSO problems, we utilize quantum imaginary time evolution (QITE) with a possible realization on quantum computers, which exploits the property of quantum superposition to explore the full Hilbert space and can thus address optimization problems of topological nature. We report the performance of different quantum optimization algorithms on TSO problems and demonstrate that their capability to address optimization problems are distinct even when considering the quantum computational resources required for practical QITE implementations

    Sampling reduced density matrix to extract fine levels of entanglement spectrum

    Full text link
    Low-lying entanglement spectrum provides the quintessential fingerprint to identify the highly entangled quantum matter with topological and conformal field-theoretical properties. However, when the entangling region acquires long boundary with the environment, such as that between long coupled chains or in two or higher dimensions, there unfortunately exists no universal yet practical method to compute the entanglement spectra with affordable computational cost. Here we propose a new scheme to overcome such difficulty and successfully extract the low-lying fine entanglement spectrum (ES). We trace out the environment via quantum Monte Carlo simulation and diagonalize the reduced density matrix to gain the ES. We demonstrate the strength and reliability of our method through long coupled spin chains and answer its long-standing controversy. Our simulation results, with unprecedentedly large system sizes, establish the practical computation scheme of the entanglement spectrum with a huge freedom degree of environment

    QCD corrections to the R-parity violating processes ppˉ/pp→eμ+Xp\bar{p}/pp \to e\mu+X at hadron colliders

    Full text link
    We present the QCD corrections to the processes ppˉ/pp→eμ+Xp\bar{p}/pp \to e\mu+X at the Tevatron and the CERN large hadron collider(LHC). The numerical results show that variation of K factor is in the range between 1.28(1.32)1.28(1.32) and 1.79(1.58)1.79(1.58) at the Tevatron(LHC). We find that the QCD correction part from the one-loop gluon-gluon fusion subprocess is remarkable at the LHC and should be taken into account.Comment: 7 pages, 6 Postscript figures, to be appeared in Phy. Rev.
    • …
    corecore