14 research outputs found

    Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    Get PDF
    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.Unilever (Firm)National Cancer Institute (U.S.) (R01-CA055042 (now R01-ES022872))Massachusetts Institute of Technology. Center for Environmental Health Sciences (Grant NIEHS P30-ES002109

    Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance

    Get PDF
    Background: A myriad of new chemicals has been introduced into our environment and exposure to these agents can damage cells and induce cytotoxicity through different mechanisms, including damaging DNA directly. Analysis of global transcriptional and phenotypic responses in the yeast S. cerevisiae provides means to identify pathways of damage recovery upon toxic exposure. Results: Here we present a phenotypic screen of S. cerevisiae in liquid culture in a microtiter format. Detailed growth measurements were analyzed to reveal effects on ~5,500 different haploid strains that have either non-essential genes deleted or essential genes modified to generate unstable transcripts. The pattern of yeast mutants that are growth-inhibited (compared to WT cells) reveals the mechanisms ordinarily used to recover after damage. In addition to identifying previously-described DNA repair and cell cycle checkpoint deficient strains, we also identified new functional groups that profoundly affect MMS sensitivity, including RNA processing and telomere maintenance. Conclusions: We present here a data-driven method to reveal modes of toxicity of different agents that impair cellular growth. The results from this study complement previous genomic phenotyping studies as we have expanded the data to include essential genes and to provide detailed mutant growth analysis for each individual strain. This eukaryotic testing system could potentially be used to screen compounds for toxicity, to identify mechanisms of toxicity, and to reduce the need for animal testing.National Institutes of Health (U.S.) (NIH grant CA055042)National Institutes of Health (U.S.) (Grant ES002109)Swedish Research Council (Fellowship)Spain. Ministerio de Ciencia e Innovación (Fellowship)American Cancer Society (Research Professor

    Experimental workflow for barcoded genomic phenotyping.

    No full text
    <p>Schematic representation of A) experimental design (t is the time of cell harvest, which was at 10 or 20 generation times) and B) analysis and filtering of high-throughput sequencing data.</p

    Tryptophan biosynthesis rescues cells from ROS.

    No full text
    <p>A) A schematic of the tryptophan biosynthesis pathway <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0073736#pone.0073736-Braus1" target="_blank">[29]</a>. PRA: N-(5′-phospohribosyl)-anthsranilate, CDRP: 1-(o-carboxyphenylamino)-1-desoxyribuose-5-phosphate. B) Compound sensitivity of selected mutant strains were analyzed by spot assay. Strains were grown in liquid YPD+G418 overnight at 30°C and then diluted in YPD. Ten-fold serial dilutions of each yeast culture was spotted onto YPD plates in the absence (control) and presence of the different compounds: MMS (0.006%), MEN (40 µM), HYQ (3 mg ml<sup>−1</sup>), and tBuOOH (0.75 mM). Plates were incubated at 30°C and growth was recorded after 48 h exposure.</p

    The difference between alkylating and oxidizing agents can be explained by fitness profiles of the strains.

    No full text
    <p>A) Two-dimensional hierarchical clustering of fitness ratio (median log ratio of exposed/control) results using the strains sensitive after 10 and 20 generation times upon exposure to different chemicals. Compounds and doses are plotted across the horizontal axis. On the vertical axis, a subset of 508 strains with reduced fitness is shown. B) Protein-protein interaction networks with >5 toxicity-modulating proteins. The colors (explained in legend, same as labels in A) within the pie charts indicate the contribution of each of the eight compounds. Alkylating agents represented in shades of yellow-red, oxidizing agents in shades of blue and non-genotoxic compounds in green.</p

    Functional enrichment reveals an alkylating agent-specific DNA repair and cell cycle dependency.

    No full text
    <p>Gene-annotation enrichment analysis heat map and clustering for sensitive strains to different compounds at early (10 generation times) or late (20 generation times) timepoints. Heat map colors correspond to the –log10 of the p-values.</p
    corecore