22 research outputs found
Knowledge structure and hotspots research of glioma immunotherapy: a bibliometric analysis
BackgroundGlioma is the most common primary brain tumor. Traditional treatments for glioma include surgical resection, radiotherapy, chemotherapy, and bevacizumab therapy, but their efficacies are limited. Immunotherapy provides a new direction for glioma treatment. This study aimed to summarize the knowledge structure and research hotspots of glioma immunotherapy through a bibliometric analysis.MethodPublications pertaining to glioma immunotherapy published during the period from 1st January 1990 to 27th March 2023 were downloaded from the Web of Science Core Collection (WoSCC). Bibliometric analysis and visualization were performed using the CiteSpace, VOSviewer, Online Analysis Platform of Literature Metrology, and R software. The hotspots and prospects of glioma immunotherapy research were illustrated via analyzing the countries, institutions, journals, authors, citations and keywords of eligible publications.ResultsA total of 1,929 publications pertaining to glioma immunotherapy in 502 journals were identified as of 27th March 2023, involving 9,505 authors from 1,988 institutions in 62 countries. Among them were 1,285 articles and 644 reviews. Most of publications were produced by the United States. JOURNAL OF NEURO-ONCOLOGY published the majority of publications pertaining to glioma immunotherapy. Among the authors, Lim M contributed the largest number of publications. Through analyzing keyword bursts and co-cited references, immune-checkpoint inhibitors (ICIs) were identified as the research focus and hotspot.ConclusionUsing a bibliometric analysis, this study provided the knowledge structure and research hotspots in glioma immunotherapy research during the past 33 years, with ICIs staying in the current and future hotspot. Our findings may direct the research of glioma immunotherapy in the future
Highly efficient cash sterilization with ultrafast and flexible Joule‐heating strategy by laser patterning
Since ancient times, humans have learned to use fire and other heating methods to fight against dangerous pathogens, like cooking raw food, sterilizing surgical tools, and disinfecting other pathogen transmission media. However, it remains difficult for current heating methods to achieve extremely fast and highly efficient sterilization simultaneously. Herein, an ultrafast and uniform heating‐based strategy with outstanding bactericidal performance is proposed. Ultra‐precise laser manufacturing is used to fabricate the Joule heater which can be rapidly heated to 90 °C in 5 s with less than 1 °C fluctuation in a large area by real‐time temperature feedback control. An over 98% bactericidal efficiency on S. aureus for 30 s and on E. coli for merely 5 s is shown. The heating strategy shows a 360 times faster acceleration compared to the commonly used steam sterilization from the suggested guidelines by the Centers for Disease Control and Prevention (CDC), indicating that high temperatures with short duration can effectively disinfect microorganisms. As a proof of concept, this heating strategy can be widely applied to sterilizing cash and various objects to help protect the public from bacteria in daily life
Design a New Type of Laser Cladding Nozzle and Thermal Fluid Solid Multi-Field Simulation Analysis
Coaxial powder feeding technology in the field of metal additive manufacturing is booming. In this paper, a new laser cladding nozzle with powder feeding channels of inner and outer rings is designed. The nozzle works with a new kind of laser, which is a new heat source with an inner beam and outer beams. The water-cooling channels are simulated in Ansys Workbench. The simulation results present the temperature distribution of the working nozzle and the velocity of the cooling water. The thermal dilation of the nozzle in the working environment is also simulated. The results show that the loop water cooling channel could effectively reduce the high temperature of the nozzle down to about 200 °C. In addition, it could well restrain the thermal deformation of the nozzle lower to 0.35 mm. The equivalent stress of most parts is controlled under 360 MPa. Then, the powder flows of the inner and outer rings of the multiple powder feeding channels are simulated in Ansys Fluent. The convergence effect of the powder flow could be assumed and some significant parameters, such as the velocity, are acquired. The results present that these multiple powder feeding channels could realize the generation and removal of removable supports of workpieces with highly complex shapes and achieve a large processing range and good processing efficiency. The velocity of the powder flow at the outlet is elevated to about 5 mm/s. Then, the thermal cladding states under the new laser heat source of the powder are simulated in Workbench. The temperature of the melting process and the thermal deformation and the equivalent stress/strain of the additive parts are obtained in the emulation. The results emerge that the powder melting range and the ascending temperature of the melting pool are improved with this effect. The greatest temperature of the melting pool is about 2900 °C in the machining process, and the maximum thermal equivalent stress is 1.1407 × 1010 Pa
Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons
The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem
High-Temperature and Pressure Downhole Safety Valve Performance Envelope Curve Study
The introduction of downhole safety valve performance envelope curves can effectively prevent the failure of the downhole safety valves during field operations. The method of drawing the performance envelope curve of high-temperature and pressure downhole safety value was proposed based on the mechanical properties of the downhole safety valve. The numerical simulation method was used for the mechanical performance of the downhole safety valve, and the stress change law of the overall structure of the downhole safety valve under the ultimate load was obtained. The ultimate bearing state and the failure threshold stress value of the key components of the downhole safety valve were further determined. The performance envelope curve of the downhole safety valve was finally completed. The results of the study show that the downhole safety value envelope curve can be obtained by studying the mechanical properties of the downhole safety valve, and each section of the envelope curve corresponded to the cause of failure of the downhole safety valve, giving the theoretical calculation idea of the downhole safety valve performance envelope curve. This study provides theoretical and methodological support for the study of the performance envelope curves of the downhole safety valves, packers, and other complex working conditions of downhole tools and their application in the field
Mitigating the Trade-Off between Non-Radiative Recombination and Charge Transport to Enable Efficient Ternary Organic Solar Cells
Ternary organic solar cells (OSCs) have attracted intensive studies due to their promising potential for attaining high-performing photovoltaics, whereas there has been an opening challenge in minimizing the open circuit voltage (Voc) loss while retaining the optimal carrier extraction in the multiple mixture absorbers. Here, we systemically investigate a ternary absorber comprised of two acceptors and a donor, in which the resultant Voc and fill factor are varied and determined by the ratios of acceptor components as a result of the unbalance of non-radiative recombination rates and charge transport. The transient absorption spectroscopy and electroluminescence techniques verify two distinguishable charge-transfer (CT) states in the ternary absorber, and the mismatch of non-radiative recombination rates of those two CT states is demonstrated to be associated with the Voc deficit, whilst the high-emissive acceptor molecule delivers inferior electron mobility, resulting in poor charge transport and a subpar fill factor. These findings enable us to optimize the mixture configuration for attaining the maximal-performing devices. Our results not only provide insight into maximizing the photovoltage of organic solar cells but can also motivate researchers to further unravel the photophysical mechanisms underlying the intermolecular electronic states of organic semiconductors
A Promising Method of Typhoon Wave Retrieval from Gaofen-3 Synthetic Aperture Radar Image in VV-Polarization
The motivation of this work is to explore the possibility of typhoon wave retrieval (the main parameter is significant wave height (SWH)) for C-band Gaofen (GF-3) synthetic aperture radar (SAR) with a wide swath coverage (>400 km). We aim to establish an analysis of a typhoon wave in the subresolution-scale (approximately 20 × 20 km2) on GF-3 SAR through SAR-measured parameters, including a normalized radar cross section (NRCS) and variance of the normalized SAR image (herein called cvar), which are the basic variables in an empirical wave retrieval algorithm and are independent of visible wave streaks. Several typhoons around the China Seas were captured by Chinese GF-3 SAR in 2017; e.g., Noru, Doksuri, Talim and Hato. The wave fields simulated from the third-generation numerical wave model WAVEWATCH-III (WW3) are collocated with these images. In general, the distribution patterns of the typhoon waves from the WW3 model are consistent with wave fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) at 0.125° grids, indicating that the simulation results from the WW3 model are suitable for our study. In addition to winds retrieved from GF-3 SAR images in vertical-horizontal (VH) polarization, the characteristics of the typhoon wave on vertical-vertical (VV) polarization GF-3 SAR images are studied. It is found that SWH has a linear relationship with NRCS and cvar, however, SWH fluctuates with wind speed at all incidence angles. Based on the analyzed results, we simply tune two empirical wave retrieval algorithms for GF-3 SAR in typhoons. Although the correlation (COR) reaches 0.5 taking account into the NRCS term, a more accurate retrieval algorithm, including more related terms, is anticipated for further development for GF-3 SAR and validated through more typhoon images