20 research outputs found

    Primary pulmonary cytotoxic T lymphocytes induced by immunization with a vaccinia virus recombinant expressing influenza A virus nucleoprotein peptide do not protect mice against challenge

    Get PDF
    The nucleoprotein (NP) of influenza A virus is the dominant antigen recognized by influenza virus-specific cytotoxic T lymphocytes (CTLs), and adoptive transfer of NP-specific CTLs protects mice from influenza A virus infection. BALB/c mouse cells (H-2d) recognize a single Kd-restricted CTL epitope of NP consisting of amino acids 147 to 155. In the present study, mice were immunized with various vaccinia virus recombinant viruses to examine the effect of the induction of primary pulmonary CTLs on resistance to challenge with influenza A/Puerto Rico/8/34 virus. The minigene ESNP(147-155)-VAC construct, composed of a signal sequence from the adenovirus E3/19K glycoprotein (designated ES) and expressing the 9-amino-acid NP natural determinant (amino acids 147 to 155) preceded by an alanine residue, a similar minigene NP(Met 147-155)-VAC lacking ES, and a full-length NP-VAC recombinant of influenza virus were analyzed. The two minigene NP-VAC recombinants induced a greater primary pulmonary CTL response than the full-length NP-VAC recombinant. However, NP-specific CTLs induced by immunization with ESNP(147-155)-VAC did not decrease peak virus titer or accelerate clearance of virus in the lungs of mice challenged intranasally with A/PR/8/34. Furthermore, NP-specific CTLs induced by immunization did not protect mice challenged intranasally with a lethal dose of A/PR/8/34. Sequence analysis of the NP CTL epitope of A/PR/8/34 challenge virus obtained from lungs after 8 days of replication in ESNP(147-155)-VAC-immunized mice showed identity with that of the input virus, demonstrating that an escape mutant had not emerged during replication in vivo. Thus, in contrast to adoptively transferred CTLs, pulmonary NP-specific CTLs induced by recombinant vaccinia virus immunization do not have protective in vivo antiviral activity against influenza virus infection

    Understanding prediction systems for HLA-binding peptides and t-cell epitope identification

    No full text
    Peptide binding to HLA molecules is a critical step in induction and regulation of T-cell mediated immune responses. Because of combinatorial complexity of immune responses, systematic studies require combination of computational methods and experimentation. Most of available computational predictions are based on discriminating binders from non-binders based on use of suitable prediction thresholds. We compared four state-of-the-art binding affinity prediction models and found that nonlinear models show better performance than linear models. A comprehensive analysis of HLA binders (A*0101, A*0201, A*0301, A*1101, A*2402, B*0702, B*0801 and B*1501) showed that non-linear predictors predict peptide binding affinity with high accuracy. The analysis of known T-cell epitopes of survivin and known HIV T-cell epitopes showed lack of correlation between binding affinity and immunogenicity of HLA-presented peptides. T-cell epitopes, therefore, can not be directly determined from binding affinities by simple selection of the highest affinity binders
    corecore