10 research outputs found

    Non-equilibrium model of spray-stratified atmospheric boundary layer under high wind conditions

    No full text
    Magnetite-based ferrofluids are manufactured magneto-polarisable nanofluids that magnetize in an external magnetic field in a similar way to natural paramagnetic fluids(e.g. oxygen), however to a much higher degree. Paramagnetic and ferrofluid flows are described by similar equations and it is expected that they would exhibit a similar behaviour. Indeed we show that in both type of fluids the most prominent instability structures align with the in-layer field component and the onset of magnetoconvection is delayed by the field inclination. However we find that in contrast to paramagnetic fluids the instabilities arising in differentially heated ferrofluids placed in a uniform external oblique magnetic field are oscillatory. This is traced back to the nonlinearity of the magnetic field distribution induced inside the ferrofluid layer that arises whenever the direction of the applied magnetic field is not normal. Given that the magnetic field inclination with respect to the plane of the layer is inevitable near its edges the obtained stability results shed light on the possible reasons for the existnce of unsteady patterns that have been detected in the normal field experiments we reported previously

    Effect of ocean spray on vertical momentum transport under high-wind conditions

    No full text
    Two mathematical models are proposed detailing the influence of ocean spray on vertical momentum transport under high-wind conditions associated with a hurricane or severe storm. The first model is based on a turbulent kinetic energy (TKE) equation and accounts for the so-called lubrication effect due to the reduction of turbulence intensity. The second model is based on Monin–Obukhov similarity (MOS) and uses available experimental data. It is demonstrated that the flow acceleration is negligible for wind speeds below a certain critical value due to the fact that the spray volume concentration is low for such speeds. For wind speeds higher than the critical value, the spray concentration rapidly increases, which results in significant flow acceleration. Both models produce qualitatively similar results for all turbulent flow parameters considered. It was found that the MOS-based model tends to predict a noticeably stronger lubrication effect than the TKE-based model, especially for lower wind speeds. The results of model calculations are in very good agreement with available experimental data for the spray production values near the upper bound. It is also shown that neither the value of the turbulent Schmidt number in the TKE-based model nor the choice of a stability profile function affects the spray-laden flow dynamics significantly
    corecore