509 research outputs found

    Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos

    Full text link
    Every moment counts in action recognition. A comprehensive understanding of human activity in video requires labeling every frame according to the actions occurring, placing multiple labels densely over a video sequence. To study this problem we extend the existing THUMOS dataset and introduce MultiTHUMOS, a new dataset of dense labels over unconstrained internet videos. Modeling multiple, dense labels benefits from temporal relations within and across classes. We define a novel variant of long short-term memory (LSTM) deep networks for modeling these temporal relations via multiple input and output connections. We show that this model improves action labeling accuracy and further enables deeper understanding tasks ranging from structured retrieval to action prediction.Comment: To appear in IJC

    Generalizable Neural Fields as Partially Observed Neural Processes

    Full text link
    Neural fields, which represent signals as a function parameterized by a neural network, are a promising alternative to traditional discrete vector or grid-based representations. Compared to discrete representations, neural representations both scale well with increasing resolution, are continuous, and can be many-times differentiable. However, given a dataset of signals that we would like to represent, having to optimize a separate neural field for each signal is inefficient, and cannot capitalize on shared information or structures among signals. Existing generalization methods view this as a meta-learning problem and employ gradient-based meta-learning to learn an initialization which is then fine-tuned with test-time optimization, or learn hypernetworks to produce the weights of a neural field. We instead propose a new paradigm that views the large-scale training of neural representations as a part of a partially-observed neural process framework, and leverage neural process algorithms to solve this task. We demonstrate that this approach outperforms both state-of-the-art gradient-based meta-learning approaches and hypernetwork approaches.Comment: To appear ICCV 202

    Diffusion-HPC: Synthetic Data Generation for Human Mesh Recovery in Challenging Domains

    Full text link
    Recent text-to-image generative models have exhibited remarkable abilities in generating high-fidelity and photo-realistic images. However, despite the visually impressive results, these models often struggle to preserve plausible human structure in the generations. Due to this reason, while generative models have shown promising results in aiding downstream image recognition tasks by generating large volumes of synthetic data, they are not suitable for improving downstream human pose perception and understanding. In this work, we propose a Diffusion model with Human Pose Correction (Diffusion-HPC), a text-conditioned method that generates photo-realistic images with plausible posed humans by injecting prior knowledge about human body structure. Our generated images are accompanied by 3D meshes that serve as ground truths for improving Human Mesh Recovery tasks, where a shortage of 3D training data has long been an issue. Furthermore, we show that Diffusion-HPC effectively improves the realism of human generations under varying conditioning strategies

    AdaEmbed: Semi-supervised Domain Adaptation in the Embedding Space

    Full text link
    Semi-supervised domain adaptation (SSDA) presents a critical hurdle in computer vision, especially given the frequent scarcity of labeled data in real-world settings. This scarcity often causes foundation models, trained on extensive datasets, to underperform when applied to new domains. AdaEmbed, our newly proposed methodology for SSDA, offers a promising solution to these challenges. Leveraging the potential of unlabeled data, AdaEmbed facilitates the transfer of knowledge from a labeled source domain to an unlabeled target domain by learning a shared embedding space. By generating accurate and uniform pseudo-labels based on the established embedding space, the model overcomes the limitations of conventional SSDA, thus enhancing performance significantly. Our method's effectiveness is validated through extensive experiments on benchmark datasets such as DomainNet, Office-Home, and VisDA-C, where AdaEmbed consistently outperforms all the baselines, setting a new state of the art for SSDA. With its straightforward implementation and high data efficiency, AdaEmbed stands out as a robust and pragmatic solution for real-world scenarios, where labeled data is scarce. To foster further research and application in this area, we are sharing the codebase of our unified framework for semi-supervised domain adaptation

    VideoAgent: Long-form Video Understanding with Large Language Model as Agent

    Full text link
    Long-form video understanding represents a significant challenge within computer vision, demanding a model capable of reasoning over long multi-modal sequences. Motivated by the human cognitive process for long-form video understanding, we emphasize interactive reasoning and planning over the ability to process lengthy visual inputs. We introduce a novel agent-based system, VideoAgent, that employs a large language model as a central agent to iteratively identify and compile crucial information to answer a question, with vision-language foundation models serving as tools to translate and retrieve visual information. Evaluated on the challenging EgoSchema and NExT-QA benchmarks, VideoAgent achieves 54.1% and 71.3% zero-shot accuracy with only 8.4 and 8.2 frames used on average. These results demonstrate superior effectiveness and efficiency of our method over the current state-of-the-art methods, highlighting the potential of agent-based approaches in advancing long-form video understanding
    • …
    corecore