94 research outputs found

    Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations

    Full text link
    We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension of the self consistent field theory for Gaussian chains, with the density variables evolving in time, and the method of the external potential dynamics where the effective external fields are propagated in time. Different wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that maps the chains -- in our case with 64 effective segments -- on a coarse grained lattice. The results obtained through self consistent field calculations and Monte Carlo simulations can be compared because the time, length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension, and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e. wave vector independent, kinetic factor. Including fluctuations in the self consistent field calculations leads to a shorter time span of spinodal behaviour and a reduction of the relaxation rate for smaller wave vectors and prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin

    Moral expansiveness around the world:The role of societal factors across 36 countries

    Get PDF
    International audienceWhat are the things that we think matter morally, and how do societal factors influence this? To date, research has explored several individual-level and historical factors that influence the size of our ‘moral circles.' There has, however, been less attention focused on which societal factors play a role. We present the first multi-national exploration of moral expansiveness—that is, the size of people’s moral circles across countries. We found low generalized trust, greater perceptions of a breakdown in the social fabric of society, and greater perceived economic inequality were associated with smaller moral circles. Generalized trust also helped explain the effects of perceived inequality on lower levels of moral inclusiveness. Other inequality indicators (i.e., Gini coefficients) were, however, unrelated to moral expansiveness. These findings suggest that societal factors, especially those associated with generalized trust, may influence the size of our moral circles

    Outcomes of long bones treated with carbon-fiber nails for oncologic indications: international multi-institutional study

    Get PDF
    Background: Intramedullary nail fixation is commonly used for prophylactic stabilization of impending and fixation of complete pathological fractures of the long bones. However, metallic artifacts complicate imaging evaluation for bone healing or tumor progression and postoperative radiation planning. Carbon-fiber implants have gained popularity as an alternative, given their radiolucency and superior axial bending. This study evaluates incidences of mechanical and nonmechanical complications.Methods: Adult patients (age 18 years and older) treated with carbon-fiber nails for impending/complete pathological long bone fractures secondary to metastases from 2013 to 2020 were analyzed for incidences and risk factors of mechanical and nonmechanical complications. Mechanical complications included aseptic screw loosening and structural failures of host bone and carbon-fiber implants. Deep infection and tumor progression were considered nonmechanical. Other complications/adverse events were also reported.Results: A total of 239 patients were included; 47% were male, and 53% were female, with a median age of 68 (IQR, 59 to 75) years. Most common secondary metastases were related to breast cancer (19%), lung cancer (19%), multiple myeloma (18%), and sarcoma (13%). In total, 17 of 30 patients with metastatic sarcoma received palliative intramedullary nail fixation for impending/complete pathological fractures, and 13 of 30 received prophylactic nail stabilization of bone radiated preoperatively to manage juxta-osseous soft-tissue sarcomas, where partial resection of the periosteum or bone was necessary for negative margin resection. 33 (14%) patients had complications. Mechanical failures included 4 (1.7%) structural host bone failures, 7 (2.9%) implant structural failures, and 1 (0.4%) aseptic loosening of distal locking screws. Nonmechanical failures included 8 (3.3%) peri-implant infections and 15 (6.3%) tumor progressions with implant contamination. The 90-day and 1-year mortalities were 28% (61/239) and 53% (53/102), respectively. The literature reported comparable failure and mortality rates with conventional titanium treatment.Conclusions: Carbon-fiber implants might be an alternative for treating impending and sustained pathological fractures secondary to metastatic bone disease. The seemingly comparable complication profile warrants further cohort studies comparing carbon-fiber and titanium nail complications.</div

    Consumer-Based Leisure Constraint for Online Gaming

    Get PDF
    [[abstract]]The purpose of this study is to develop a multidimensional measure of consumer-based leisure constraint for online game play and to assess its psychometric properties. An empirical model of player constraint in online games provides the foundation to understanding and assessing how players differ from one another (such as high gamers/low gamers and high gamers/non-gamers) and how constraints on play relate to frequency of use. In the current study, an exploratory factor analysis was used to extract the common factors, and confirmatory factor analysis was used to create an empirical model of players' perception of constraint and to reveal its underlying structure. The analysis revealed six dimensions of constraint. The relationship between perception of constraint and frequency of use is also presented.[[notice]]補正完畢[[incitationindex]]SSCI[[booktype]]電子版[[booktype]]紙

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Study of CP violation in B0 → DK⋆(892)0 decays with D → Kπ(ππ), ππ(ππ), and KK final states

    Get PDF
    A measurement of CP-violating observables associated with the interference of B0 → D0K⋆ (892)0 and B0 → D¯ 0K⋆ (892)0 decay amplitudes is performed in the D0 → K∓π ±(π +π −), D0 → π +π −(π +π −), and D0 → K+K− fnal states using data collected by the LHCb experiment corresponding to an integrated luminosity of 9 fb−1 . CP-violating observables related to the interference of B0 s → D0K¯ ⋆ (892)0 and B0 s → D¯ 0K¯ ⋆ (892)0 are also measured, but no evidence for interference is found. The B0 observables are used to constrain the parameter space of the CKM angle γ and the hadronic parameters r DK⋆ B0 and δ DK⋆ B0 with inputs from other measurements. In a combined analysis, these measurements allow for four solutions in the parameter space, only one of which is consistent with the world average

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level
    corecore