7,791 research outputs found

    SNOWMASS WHITE PAPER - SLHC Endcap 1.4<y<4 Hadron Optical Calorimetry Upgrades in CMS with Applications to NLC/T-LEP, Intensity Frontier, and Beyond

    Full text link
    Radiation damage in the plastic scintillator and/or readout WLS fibers in the HE endcap calorimeter 1.4<y<4 in the CMS experiment at LHC and SLHC will require remediation after 2018. We describe one alternative using the existing brass absorber in the Endcap calorimeter, to replace the plastic scintillator tiles with BaF2 tiles, or quartz tiles coated with thin(1-5 micron) films of radiation-hard pTerphenyl(pTP) or the fast phosphor ZnO:Ga. These tiles would be read-out by easily replaceable arrays of straight, parallel WLS fibers coupled to clear plastic-cladded quartz fibers of proven radiation resistance. We describe a second alternative with a new absorber matrix extending to 1.4<y<4 in a novel Analog Particle Flow Cerenkov Compensated Calorimeter, using a dual readout of quartz tiles and scintillating (plastic, BaF2, or pTP/ ZnO:Ga thin film coated quartz, or liquid scintillator) tiles, also using easily replaceable arrays of parallel WLS fibers coupled to clear quartz transmitting fibers for readout. An Analog Particle Flow Scintillator-Cerenkov Compensated Calorimeter has application in NLC/T-LEP detectors and Intensity Frontier detectors

    Decoding the Mechanism for the Origin of Dark Matter in the Early Universe Using LHC Data

    Full text link
    It is shown that LHC data can allow one to decode the mechanism by which dark matter is generated in the early universe in supersymmetric theories. We focus on two of the major mechanisms for such generation of dark matter which are known to be the Stau Coannihilation (Stau-Co) where the neutralino is typically Bino like and annihilation on the Hyperbolic Branch (HB) where the neutralino has a significant Higgsino component. An investigation of how one may discriminate between the Stau-Co region and the HB region using LHC data is given for the mSUGRA model. The analysis utilizes several signatures including multi leptons, hadronic jets, b-tagging, and missing transverse momentum. A study of the SUSY signatures reveals several correlated smoking gun signals allowing a clear discrimination between the Stau-Co and the HB regions where dark matter in the early universe can originate.Comment: 7 pages, 5 figs, 2 columns, Accepted for publication in Physical Review
    corecore