122 research outputs found

    Characterization of novel beta-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae.

    Full text link
    The pneumococcus obtains its energy from the metabolism of host glycosides. Therefore, efficient degradation of host glycoproteins is integral to pneumococcal virulence. In search of novel pneumococcal glycosidases, we characterized the Streptococcus pneumoniae strain D39 protein encoded by SPD_0065 and found that this gene encodes a beta-galactosidase. The SPD_0065 recombinant protein released galactose from desialylated fetuin, which was used here as a model of glycoproteins found in vivo. A pneumococcal mutant with a mutation in SPD_0065 showed diminished beta-galactosidase activity, exhibited an extended lag period in mucin-containing defined medium, and cleaved significantly less galactose than the parental strain during growth on mucin. As pneumococcal beta-galactosidase activity had been previously attributed solely to SPD_0562 (bgaA), we evaluated the contribution of SPD_0065 and SPD_0562 to total beta-galactosidase activity. Mutation of either gene significantly reduced enzymatic activity, but beta-galactosidase activity in the double mutant, although significantly less than that in either of the single mutants, was not completely abolished. The expression of SPD_0065 in S. pneumoniae grown in mucin-containing medium or tissues harvested from infected animals was significantly upregulated compared to that in pneumococci from glucose-containing medium. The SPD_0065 mutant strain was found to be attenuated in virulence in a manner specific to the host tissue

    Assessing the in vivo biocompatibility of molecularly imprinted polymer nanoparticles

    Get PDF
    Molecularly imprinted polymer nanoparticles (nanoMIPs) are high affinity synthetic receptors which show promise as imaging and therapeutic agents. Comprehensive analysis of the in vivo behaviour of nanoMIPs must be performed before they can be considered for clinical applications. This work reports the solid-phase synthesis of nanoMIPs and an investigation of their biodistribution, clearance and cytotoxicity in a rat model following both intravenous and oral administration. These nanoMIPs were found in each harvested tissue type, including brain tissue, implying their ability to cross the blood brain barrier. The nanoMIPs were cleared from the body via both faeces and urine. Furthermore, we describe an immunogenicity study in mice, demonstrating that nanoMIPs specific for a cell surface protein showed moderate adjuvant properties, whilst those imprinted for a scrambled peptide showed no such behaviour. Given their ability to access all tissue types and their relatively low cytotoxicity, these results pave the way for in vivo applications of nanoMIPs

    RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization

    Get PDF
    To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a "helical unravelling" of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus

    Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress

    Get PDF
    Streptococcus pneumoniae is a Gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H2O2) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

    Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the human population. Translocation of the bacteria into internal sites can cause a range of diseases, such as pneumonia, otitis media, meningitis, and bacteremia. This transition from nasopharynx to growth at systemic sites means that the pneumococcus needs to adjust to a variety of environmental conditions, including transition metal ion availability. Although it is an important nutrient, iron potentiates oxidative stress, and it is established that in S. pneumoniae, expression of iron transport systems and proteins that protect against oxidative stress are regulated by an orphan response regulator, RitR. In this study, we investigated the effect of iron and manganese ion availability on the growth of a ritR mutant. Deletion of ritR led to impaired growth of bacteria in high-iron medium, but this phenotype could be suppressed with the addition of manganese. Measurement of metal ion accumulation indicated that manganese prevents iron accumulation. Furthermore, the addition of manganese also led to a reduction in the amount of hydrogen peroxide produced by bacterial cells. Studies of virulence in a murine model of infection indicated that RitR was not essential for pneumococcal survival and suggested that derepression of iron uptake systems may enhance the survival of pneumococci in some niches

    Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages

    Get PDF
    There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the 'Beijing' sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive

    Role of Operon aaoSo-mutT in Antioxidant Defense in Streptococcus oligofermentans

    Get PDF
    Previously, we have found that an insertional inactivation of aaoSo, a gene encoding L-amino acid oxidase (LAAO), causes marked repression of the growth of Streptococcus oligofermentans. Here, we found that aaoSo and mutT, a homolog of pyrophosphohydrolase gene of Escherichia coli, constituted an operon. Deletion of either gene did not impair the growth of S. oligofermentans, but double deletion of both aaoSo and mutT was lethal. Quantitative PCR showed that the transcript abundance of mutT was reduced for 13-fold in the aaoSo insertional mutant, indicating that gene polarity derived from the inactivation of aaoSo attenuated the expression of mutT. Enzymatic assays were conducted to determine the biochemical functions of LAAO and MutT of S. oligofermentans. The results indicated that LAAO functioned as an aminoacetone oxidase [47.75 nmol H2O2 (min·mg protein)–1]; and MutT showed the pyrophosphohydrolase activity, which removed mutagens such as 8-oxo-dGTP. Like paraquat, aaoSo mutations increased the expression of SOD, and addition of aminoacetone (final concentration, 5 mM) decreased the mutant’s growth by 11%, indicating that the aaoSo mutants are under ROS stress. HPLC did reveal elevated levels of cytoplasmic aminoacetone in both the deletion and insertional gene mutants of aaoSo. Electron spin resonance spectroscopy showed increased hydroxyl radicals in both types of aaoSo mutant. This demonstrated that inactivation of aaoSo caused the elevation of the prooxidant aminoacetone, resulting the cellular ROS stress. Our study indicates that the presence of both LAAO and MutT can prevent endogenous metabolites-generated ROS and mutagens. In this way, we were able to determine the role of the aaoSo-mutT operon in antioxidant defense in S. oligofermentans

    5G-CLARITY : 5G-advanced private networks integrating 5GNR, WiFi, and LiFi

    Get PDF
    The future of the manufacturing industry highly depends on digital systems that transform existing production and monitoring systems into autonomous systems fulfilling stringent requirements in terms of availability, reliability, security, low latency, and positioning with high accuracy. In order to meet such requirements, private 5G networks are considered as a key enabling technology. In this article, we introduce the 5G-CLARITY system that integrates 5GNR, WiFi, and LiFi access networks, and develops novel management enablers to operate 5G-Advanced private networks. We describe three core features of 5G-CLARITY, including a multi-connectivity framework, a high-precision positioning server, and a management system to orchestrate private network slices. These features are evaluated by means of packet-level simulations and an experimental testbed demonstrating the ability of 5G-CLARITY to police access network traffic, to achieve centimeter-level positioning accuracy, and to provision private network slices in less than one minute
    corecore