2 research outputs found

    Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds

    No full text
    Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, one of the strategies recommended for reducing the prevalence of the disease in animals is the use of the BCG vaccine, alone or in combination with proteins. It has been shown that the vaccine elicits a strong immune response, downsizes the number of animals with visible lesions, and reduces the rate of infection as well as the bacillary count. This paper, based on scientific evidence, makes suggestions about some practical vaccination alternatives that can be used in infected herds to reduce bTB prevalence, considering BCG strains, vaccine doses, routes of application, and age of the animals. Our conclusion is that vaccination is a promising alternative to be included in current control programs in underdeveloped countries to reduce the disease burden

    Prime Vaccination with Chitosan-Coated Phipps BCG and Boosting with CFP-PLGA against Tuberculosis in a Goat Model

    No full text
    Attempts to improve the immune response and efficacy of vaccines against tuberculosis in cattle, goats, and other animal species have been the focus of research in this field during the last two decades. Improving the vaccine efficacy is essential prior to running long-lasting and expensive field trials. Studies have shown that vaccine protocols utilizing boosting with proteins improve the vaccine efficacy. The use of polymers such as chitosan and PolyLactic-co-Glycolic Acid (PLGA) improves the immune response against different diseases by improving the interaction of antigens with the cellular immune system and modulating the host immune response. This study shows that the prime BCG vaccination, boosted with a culture filtrate protein (CFP), alone or in combination with chitosan and PolyLactic-co-Glycolic Acid (PLGA), have the potential to reduce tuberculosis (TB) dissemination by reducing the number of animals with lesions, the number of lesions per animal, and the size of the lesions in vaccinated animals, compared with those not vaccinated or those vaccinated with BCG alone. The vaccinated groups showed significantly higher Interferon-γ levels in the blood compared to the control, nonvaccinated group after vaccination, after boosting, and after the challenge with the wild-type Mycobacterium bovis strain
    corecore