20 research outputs found

    Spatial-temporal clustering of an outbreak of SARS-CoV-2 Delta VOC in Guangzhou, China in 2021

    Get PDF
    BackgroundIn May 2021, the SARS-CoV-2 Delta variant led to the first local outbreak in China in Guangzhou City. We explored the epidemiological characteristics and spatial-temporal clustering of this outbreak.MethodsBased on the 153 cases in the SARS-CoV-2 Delta variant outbreak, the Knox test was used to analyze the spatial-temporal clustering of the outbreak. We further explored the spatial-temporal clustering by gender and age groups, as well as compared the changes of clustering strength (S) value between the two outbreaks in Guangzhou.ResultsThe result of the Knox analysis showed that the areas at short distances and brief periods presented a relatively high risk. The strength of clustering of male-male pairs was higher. Age groups showed that clustering was concentrated in cases aged ≤ 18 years matched to 18–59 years and cases aged 60+ years. The strength of clustering of the outbreak declined after the implementation of public health measures. The change of strength of clustering at time intervals of 1–5 days decreased greater in 2021 (S = 129.19, change rate 38.87%) than that in 2020 (S = 83.81, change rate 30.02%).ConclusionsThe outbreak of SARS-CoV-2 Delta VOC in Guangzhou has obvious spatial-temporal clustering. The timely intervention measures are essential role to contain this outbreak of high transmission

    Survey of Tyrosine Kinase Signaling Reveals ROS Kinase Fusions in Human Cholangiocarcinoma

    Get PDF
    Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23) of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted

    Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart

    Full text link
    Abstract Background Insulin resistance has been independently related to heart failure. However, the specific mechanisms of high FFA levels in the pathophysiology of heart failure in insulin-resistant states are remain largely unclear. This study investigated whether elevated circulating free fatty acids (FFA) levels result in impaired cardiac structure and function in vivo via insulin-related signaling pathways in myocardium. Methods Male Wistar rats were randomly divided into the intralipid group (20% intralipid plus heparin infusion) and the control group (glycerol infusion). Blood samples were collected before and after 6-, 12-, and 24-h infusions. Cardiac structure and function were measured using echocardiography. Maximum velocity of myocardial contraction (+dP/dt max) and diastole (−dP/dt max) were measured using a physiological polygraph in vivo. Heart tissues were collected for western blotting. Results Compared with the control group, plasma FFA, plasma glucose, and serum insulin levels increased significantly in the intralipid group. With increasing infusion time, cardiac function in the intralipid group decreased gradually compared with the control group. After a 24-h infusion, early (E’, cm/s) diastolic peak velocities and (−dP/dt max) decreased significantly. Protein expression of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and phosphorylated Akt in myocardium increased after a 6-h infusion and decreased significantly after a 24-h infusion in the intralipid group. Protein expression of glucose transporter type 4 (GLUT4), Adenosine 5′-monophosphate -activated protein kinase (AMPK), phosphorylated AMPK(p-AMPK), and endothelial nitric oxide synthase (eNOS) in myocardium gradually decreased in the intralipid group. Conclusions Elevated FFA levels may impair cardiac function and cardiac dysfunction might result from myocardial insulin resistance with significant changes to PI3K-Akt-GLUT4 and AMPK-eNOS signaling pathways with increasing FFA levels

    A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    Full text link
    Abstract Background Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maize (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. Conclusion The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.

    Transcriptomic and physiological analysis of the response of Spirodela polyrrhiza to sodium nitroprusside

    Full text link
    Abstract Background Spirodela polyrrhiza is a simple floating aquatic plant with great potential in synthetic biology. Sodium nitroprusside (SNP) stimulates plant development and increases the biomass and flavonoid content in some plants. However, the molecular mechanism of SNP action is still unclear. Results To determine the effect of SNP on growth and metabolic flux in S. polyrrhiza, the plants were treated with different concentrations of SNP. Our results showed an inhibition of growth, an increase in starch, soluble protein, and flavonoid contents, and enhanced antioxidant enzyme activity in plants after 0.025 mM SNP treatment. Differentially expressed transcripts were analysed in S. polyrrhiza after 0.025 mM SNP treatment. A total of 2776 differentially expressed genes (1425 upregulated and 1351 downregulated) were identified. The expression of some genes related to flavonoid biosynthesis and NO biosynthesis was upregulated, while the expression of some photosynthesis-related genes was downregulated. Moreover, SNP stress also significantly influenced the expression of transcription factors (TFs), such as ERF, BHLH, NAC, and WRKY TFs. Conclusions Taken together, these findings provide novel insights into the mechanisms of underlying the SNP stress response in S. polyrrhiza and show that the metabolic flux of fixed CO2 is redirected into the starch synthesis and flavonoid biosynthesis pathways after SNP treatment

    Metabolomic analysis reveals responses of Spirodela polyrhiza L. to salt stress

    Full text link
    ABSTRACTDuckweeds are particularly well suited for studies needing high output because of their quick growth and reproduction. Due to their starches and flavonoids, the potential for using duckweed as a source of food, medicine or feed has been studied. Through LC-MS analysis, 195 differential metabolites, including organic acids, phenolics, and other categories, were screened in Spirodela polyrhiza L. exposed to 4 days of NaCl. S. polyrhiza contained higher amounts of oxidized glutathione, jasmonates, and phenolic compounds but lower amounts of citric acid and glutathione under salt stress. Additionally, after 4 days of salt stress, there was an increase in the relative expression levels of genes involved in the phenolic biosynthesis pathway. Based on metabolomics, this study provides insight into the mechanism of salt-tolerant by duckweeds, as well as useful information for plant breeders and molecular biologists developing duckweed cultivars with salt tolerance and high phenolic content
    corecore