5 research outputs found

    Tetrahydroquinoline-Isoxazole/Isoxazoline Hybrid Compounds as Potential Cholinesterases Inhibitors: Synthesis, Enzyme Inhibition Assays, and Molecular Modeling Studies

    Full text link
    A series of 44 hybrid compounds that included in their structure tetrahydroquinoline (THQ) and isoxazole/isoxazoline moieties were synthesized through the 1,3-dipolar cycloaddition reaction (1,3-DC) from the corresponding N-allyl/propargyl THQs, previously obtained via cationic Povarov reaction. In vitro cholinergic enzymes inhibition potential of all compounds was tested. Enzyme inhibition assays showed that some hybrids exhibited significant potency to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Especially, the hybrid compound 5n presented the more effective inhibition against AChE (4.24 µM) with an acceptable selectivity index versus BChE (SI: 5.19), while compound 6aa exhibited the greatest inhibition activity on BChE (3.97 µM) and a significant selectivity index against AChE (SI: 0.04). Kinetic studies were carried out for compounds with greater inhibitory activity of cholinesterases. Structure–activity relationships of the molecular hybrids were analyzed, through computational models using a molecular cross-docking algorithm and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy approach, which indicated a good correlation between the experimental inhibition values and the predicted free binding energy

    Phenolic Profile and Cholinesterase Inhibitory Properties of Three Chilean Altiplano Plants: <i>Clinopodium gilliesii</i> (Benth.) Kuntze [Lamiaceae], <i>Mutisia acuminata</i> Ruiz & Pav. var. hirsuta (Meyen) Cabrera, and <i>Tagetes multiflora</i> (Kunth) [Asteraceae]

    Full text link
    This research aimed to identify the phenolic profile and composition of the aerial parts of three native species used in traditional medicine in the Andean Altiplano of northern Chile: Clinopodium gilliesii (Benth.) Kuntze [Lamiaceae] (commonly known as Muña-Muña), Mutisia acuminata Ruiz & Pav. var. hirsuta (Meyen) Cabrera [Asteraceae] (commonly known as Chinchircoma), and Tagetes multiflora (Kunth), [Asteraceae] (commonly known as Gracilis), as well as to evaluate their potential inhibitory effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Polyphenolic enriched-extracts (PEEs) of the species were prepared and analyzed and the main components were quantified using HPLC-DAD. In total, 30 phenolic compounds were identified and quantified in all species, including simple phenolics, hydroxycinnamic acids, flavan-3-ols (monomers and polymers), flavanones, and flavonols. In addition, other main phenolics from the extracts were tentatively identified by ESI-MS-MS high-resolution analysis. T. multiflora extract showed the greatest anti-AChE and BChE activity in comparison with C. gilliesii and M. acuminata extracts, being the anti-AChE and BChE activity weak in all extracts in comparison to galantamine control. To comprise to better understand the interactions between cholinesterase enzymes and the main phenolics identified in T. multiflora, molecular docking analysis was conducted

    Theoretical and experimental approaches aimed at drug design targeting neurodegenerative diseases

    Full text link
    In recent years, green chemistry has been strengthening, showing how basic and applied sciences advance globally, protecting the environment and human health. A clear example of this evolution is the synergy that now exists between theoretical and computational methods to design new drugs in the most efficient possible way, using the minimum of reagents and obtaining the maximum yield. The development of compounds with potential therapeutic activity against multiple targets associated with neurodegenerative diseases/disorders (NDD) such as Alzheimer’s disease is a hot topic in medical chemistry, where different scientists from various disciplines collaborate to find safe, active, and effective drugs. NDD are a public health problem, affecting mainly the population over 60 years old. To generate significant progress in the pharmacological treatment of NDD, it is necessary to employ different experimental strategies of green chemistry, medical chemistry, and molecular biology, coupled with computational and theoretical approaches such as molecular simulations and chemoinformatics, all framed in the rational drug design targeting NDD. Here, we review how green chemistry and computational approaches have been used to develop new compounds with the potential application against NDD, as well as the challenges and new directions of the drug development multidisciplinary process.This research was funded by FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico) grant No. 1191133 to W.G.; and FONDECYT grant No 11180604 and CONICYT (Comisión Nacional de Investigación Científica y Tecnológica—Programa de Cooperación Internacional) grant No. REDES190074 to D.R.Peer reviewe

    Microwave-assisted synthesis, biological assessment, and molecular modeling of aza-heterocycles: Potential inhibitory capacity of cholinergic enzymes to Alzheimer's disease

    Full text link
    A highly regioselective solvent-free microwave-assisted synthesis of pyrazoles and tetrahydroindazoles based on the condensation of 1,3-diketones with arylhydrazines is described. Compounds were evaluated as cholinesterase inhibitors in order to identify an alternative treatment for Alzheimer's disease. All compounds displayed moderated acetylcholinesterase inhibitory activity and most of the compounds displayed remarkable butyrylcholinesterase inhibitory activity and selectivity. The compounds 3y and 3i with IC50 of 1.65 and 3.59 µM, respectively, were the most active and selective compounds as butyrylcholinesterase inhibitors. Likewise, the compounds were tested as antioxidants agents, results showed that they have the ability to trap free-radicals. Molecular Docking studies showed a key π-π stacking interaction of most of the compounds with residue Trp82 within of butyrylcholinesterase active site. Molecular quantum similarity field, global and local reactivity descriptors, and the Fukui functions were calculated in the Density Functional Theory framework to analyze the reactivity patterns along with the molecular set.Fil: Polo, Efraín. Universidad de Talca; ChileFil: Prent Peñaloza, Luis. Universidad de Talca; ChileFil: Rodríguez Núñez, Yeray A.. Universidad Andrés Bello; ChileFil: Valdés Salas, Lady. Universidad de Talca; ChileFil: Trilleras Vásquez, Jorge Enrique. Universidad del Atlántico. Facultad de Ciencias Básicas. Programa de Química; ColombiaFil: Ramos Marchena, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Henao, José A.. Universidad Industrial Santander. Facultad de Ciencias; ColombiaFil: Galdámez, Antonio. Universidad de Chile; ChileFil: Morales Bayuelo, Alejandro. Fundación Universitaria Tecnológico Comfenalco; ColombiaFil: Gutiérrez, María Margarita Clara. Universidad de Talca; Chil
    corecore