78 research outputs found
Inflammation-induced changes in BKCa currents in cutaneous dorsal root ganglion neurons from the adult rat
Background\ud
Inflammation-induced sensitization of primary afferents is associated with a decrease in K+ current. However, the type of K+ current and basis for the decrease varies as a function of target of innervation. Because glabrous skin of the rat hindpaw is used often to assess changes in nociception in models of persistent pain, the purpose of the present study was to determine the type and extent to which K+ currents contribute to the inflammation-induced sensitization of cutaneous afferents. Acutely dissociated retrogradely labeled cutaneous dorsal root ganglion neurons from naïve and inflamed (3 days post complete Freund’s adjuvant injection) rats were studied with whole cell and perforated patch techniques.\ud
\ud
Results\ud
Inflammation-induced sensitization of small diameter cutaneous neurons was associated with an increase in action potential duration and rate of decay of the afterhyperpolarization. However, no changes in voltage-gated K+ currents were detected. In contrast, Ca2+ modulated iberiotoxin sensitive and paxilline sensitive K+ (BKCa) currents were significantly smaller in small diameter IB4+ neurons. This decrease in current was not associated with a detectable change in total protein levels of the BKCa channel α or β subunits. Single cell PCR analysis revealed a significant change in the pattern of expression of α subunit splice variants and β subunits that were consistent, at least in part, with inflammation-induced changes in the biophysical properties of BKCa currents in cutaneous neurons.\ud
\ud
Conclusions\ud
Results of this study provide additional support for the conclusion that it may be possible, if not necessary to selectively treat pain arising from specific body regions. Because a decrease in BKCa current appears to contribute to the inflammation-induced sensitization of cutaneous afferents, BKCa channel openers may be effective for the treatment of inflammatory pain
Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect
Much of the present day qualitative phenomenology of the fractional quantum
Hall effect can be understood by neglecting the interactions between composite
fermions altogether. For example the fractional quantum Hall effect at
corresponds to filled composite-fermion Landau levels,and
the compressible state at to the Fermi sea of composite fermions.
Away from these filling factors, the residual interactions between composite
fermions will determine the nature of the ground state. In this article, a
model is constructed for the residual interaction between composite fermions,
and various possible states are considered in a variational approach. Our study
suggests formation of composite-fermion stripes, bubble crystals, as well as
fractional quantum Hall states for appropriate situations.Comment: 16 pages, 7 figure
Regulation of Petrobactin and Bacillibactin Biosynthesis in Bacillus anthracis under Iron and Oxygen Variation
siderophore biosynthetic operons that are responsible for synthesis of petrobactin and bacillibactin, during variable growth conditions., a member of the bacillibactin biosynthetic operon, was only transcribed under conditions of iron-depletion, regardless of growth aeration.
Regulation of Chemokine and Chemokine Receptor Expression by PPARγ in Adipocytes and Macrophages
PPARγ plays a key role in adipocyte biology, and Rosiglitazone (Rosi), a thiazolidinedione (TZD)/PPARγ agonist, is a potent insulin-sensitizing agent. Recent evidences demonstrate that adipose tissue inflammation links obesity with insulin resistance and that the insulin-sensitizing effects of TZDs result, in part, from their anti-inflammatory properties. However the underlying mechanisms are unclear.In this study, we establish a link between free fatty acids (FFAs) and PPARγ in the context of obesity-associated inflammation. We show that treatment of adipocytes with FFAs, in particular Arachidonic Acid (ARA), downregulates PPARγ protein and mRNA levels. Furthermore, we demonstrate that the downregulation of PPARγ by ARA requires the activation the of Endoplamsic Reticulum (ER) stress by the TLR4 pathway. Knockdown of adipocyte PPARγ resulted in upregulation of MCP1 gene expression and secretion, leading to enhanced macrophage chemotaxis. Rosi inhibited these effects. In a high fat feeding mouse model, we show that Rosi treatment decreases recruitment of proinflammatory macrophages to epididymal fat. This correlates with decreased chemokine and decreased chemokine receptor expression in adipocytes and macrophages, respectively.In summary, we describe a novel link between FAs, the TLR4/ER stress pathway and PPARγ, and adipocyte-driven recruitment of macrophages. We thus both describe an additional potential mechanism for the anti-inflammatory and insulin-sensitizing actions of TZDs and an additional detrimental property associated with the activation of the TLR4 pathway by FA
Involvement of Reactive Oxygen Species in Long-Term Potentiation in the Spinal Cord Dorsal Horn
Recent studies suggest that reactive oxygen species (ROS) are functional messenger molecules in central sensitization, an underlying mechanism of persistent pain. Because spinal cord long-term potentiation (LTP) is the electrophysiological basis of central sensitization, this study investigates the effects of the increased or decreased spinal ROS levels on spinal cord LTP. Spinal cord LTP is induced by either brief, high-frequency stimulation (HFS) of a dorsal root at C-fiber intensity or superfusion of a ROS donor, tert-butyl hydroperoxide (t-BOOH), onto rat spinal cord slice preparations. Field excitatory postsynaptic potentials (fEPSPs) evoked by dorsal root stimulations with either Aβ- or C-fiber intensity are recorded from the superficial dorsal horn. HFS significantly increases the slope of both Aβ- and C-fiber evoked fEPSPs, thus suggesting LTP development. The induction, not the maintenance, of HFS-induced LTP is blocked by a N-methyl-d-aspartate (NMDA) receptor antagonist, d-2-amino-5-phosphonopentanoic acid (d-AP5). Both the induction and maintenance of LTP of Aβ-fiber-evoked fEPSPs are inhibited by a ROS scavenger, either N-tert-butyl-α-phenylnitrone or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl. A ROS donor, t-BOOH-induced LTP is inhibited by N-tert-butyl-α-phenylnitrone but not by d-AP5. Furthermore, HFS-induced LTP and t-BOOH-induced LTP occlude each other. The data suggest that elevated ROS is a downstream event of NMDA receptor activation and an essential step for potentiation of synaptic excitability in the spinal dorsal horn
- …