64 research outputs found
Size-Dependent Phase Transition Memory Switching Behavior and Low Writing Currents in GeTe Nanowires
Synthesis and device characteristics of highly scalable GeTe nanowire-based phase transition memory are reported. The authors have demonstrated reversible phase transition memory switching behavior in GeTe nanowires, and obtained critical device parameters, such as write and erase currents, threshold voltage, and programming curves. The diameter dependence of memory switching behavior in GeTe nanowires was studied and a systematic reduction of writing currents with decreasing diameter was observed, with currents as low as 0.42 mA for a 28 nm nanowire. Results show that nanowires are very promising for scalable memory applications and for studying size-dependent phase transition mechanisms at the nanoscale
Extremely Low Drift of Resistance and Threshold Voltage in Amorphous Phase Change Nanowire Devices
Time-dependent drift of resistance and threshold voltage in phase change memory (PCM) devices is of concern as it leads to data loss. Electrical drift in amorphous chalcogenides has been argued to be either due to electronic or stress relaxation mechanisms. Here we show that drift in amorphized Ge2Sb2Te5 nanowires with exposed surfaces is extremely low in comparison to thin-film devices. However, drift in stressed nanowires embedded under dielectric films is comparable to thin-films. Our results shows that drift in PCM is due to stress relaxation and will help in understanding and controlling drift in PCM devices
Self-assembled phase-change nanowire for nonvolatile electronic memory
One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change
Intercalation In Two-Dimensional Transition Metal Chalcogenides
Intercalation is a reversible insertion process of foreign species into crystal gaps. Layered materials are good host materials for various intercalant species ranging from small ions to atoms to molecules. Given the recent intense interest in two-dimensional (2D) layered materials in thin limits, this review highlights the opportunities that intercalation chemistry can provide for nanoscale layered materials. Novel heterostructures or emergent electrical properties not found in the intrinsic host materials are possible with intercalation. In particular, we review various exfoliation methods developed for 2D layered nanomaterials based on intercalation chemistry and extensive tuning of the electrical, optical, and magnetic properties of 2D layered materials due to intercalation
- …