8 research outputs found

    Overexpression of cathepsin S exacerbates lupus pathogenesis through upregulation TLR7 and IFN-α in transgenic mice

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs. Recent studies suggest relevance between cysteine protease cathepsin S (CTSS) expression and SLE. To investigate the mechanism of CTSS in SLE, CTSS-overexpressing transgenic (TG) mice were generated, and induced lupus-like symptoms. Eight months later, the TG mice spontaneously developed typical SLE symptoms regardless of the inducement. Furthermore, we observed increased toll-like receptor 7 (TLR7) expression with increased monocyte and neutrophil populations in the TG mice. In conclusion, overexpression of CTSS in mice influences TLR7 expression, autoantibodies and IFN-α, which leads to an autoimmune reaction and exacerbates lupus-like symptoms. © 2021, The Author(s).1

    Rethinking Deep Image Prior for Denoising

    No full text
    Deep image prior (DIP) serves as a good inductive bias for diverse inverse problems. Among them, denoising is known to be particularly challenging for the DIP due to noise fitting with the requirement of an early stopping. To address the issue, we first analyze the DIP by the notion of effective degrees of freedom (DF) to monitor the optimization progress and propose a principled stopping criterion before fitting to noise without access of a paired ground truth image for Gaussian noise. We also propose the 'stochastic temporal ensemble (STE)' method for incorporating techniques to further improve DIP's performance for denoising. We additionally extend our method to Poisson noise. Our empirical validations show that given a single noisy image, our method denoises the image while preserving rich textual details. Further, our approach outperforms prior arts in LPIPS by large margins with comparable PSNR and SSIM on seven different datasets.N

    Development of a SnS Film Process for Energy Device Applications

    No full text
    Tin monosulfide (SnS) is a promising p-type semiconductor material for energy devices. To realize the device application of SnS, studies on process improvement and film characteristics of SnS is needed. Thus, we developed a new film process using atomic layer deposition (ALD) to produce SnS films with high quality and various film characteristics. First, a process for obtaining a thick SnS film was studied. An amorphous SnS2 (a-SnS2) film with a high growth rate was deposited by ALD, and a thick SnS film was obtained using phase transition of a-SnS2 film by vacuum annealing. Subsequently, we investigated the effect of seed layer on formation of SnS film to verify the applicability of SnS to various devices. Separately deposited crystalline SnS and SnS2 thin films were used as seed layer. The SnS film with a SnS seed showed small grain size and high film density from the low surface energy of the SnS seed. In the case of the SnS film using a SnS2 seed, volume expansion occurred by vertically grown SnS grains due to a lattice mismatch with the SnS2 seed. The obtained SnS film using the SnS2 seed exhibited a large reactive site suitable for ion exchange

    Gradient Lithium Metal Infusion in Ag-Decorated Carbon Fibers for High-Capacity Lithium Metal Battery Anodes

    No full text
    Lithium (Li) metal is a promising anode material for high-energy-density Li batteries due to its high specific capacity. However, the uneven deposition of Li metal causes significant volume expansion and safety concerns. Here, we investigate the impact of a gradient-infused Li-metal anode using silver (Ag)-decorated carbonized cellulose fibers (Ag@CC) as a three-dimensional (3D) current collector. The loading level of the gradient-infused Li-metal anode is controlled by the thermal infusion time of molten Li. In particular, a 5 s infusion time in the Ag@CC current collector creates an appropriate space with a lithiophilic surface, resulting in improved cycling stability and a reduced volume expansion rate. Moreover, integrating a 5 s Ag@CC anode with a high-capacity cathode demonstrates superior electrochemical performance with minimal volume expansion. This suggests that a gradient-infused Li-metal anode using Ag@CC as a 3D current collector represents a novel design strategy for Li-metal-based high-capacity Li-ion batteries
    corecore