446 research outputs found

    Regulation of Microglia and Macrophage Polarization via Apoptosis Signal-Regulating Kinase 1 Silencing after Ischemic/Hypoxic Injury

    Get PDF
    Inflammation is implicated in ischemic stroke and is involved in abnormal homeostasis. Activation of the immune system leads to breakdown of the blood–brain barrier and, thereby, infiltration of immune cells into the brain. Upon cerebral ischemia, infiltrated macrophages and microglia (resident CNS immune cell) are activated, change their phenotype to M1 or M2 based on the microenvironment, migrate toward damaged tissue, and are involved in repair or damage. Those of M1 phenotype release pro-inflammatory mediators, which are associated with tissue damage, while those of M2 phenotype release anti-inflammatory mediators, which are related to tissue recovery. Moreover, late inflammation continually stimulates immune cell infiltration and leads to brain infarction. Therefore, regulation of M1/M2 phenotypes under persistent inflammatory conditions after cerebral ischemia is important for brain repair. Herein, we focus on apoptosis signal-regulating kinase 1 (ASK1), which is involved in apoptotic cell death, brain infarction, and production of inflammatory mediators after cerebral ischemia. We hypothesized that ASK1 is involved in the polarization of M1/M2 phenotype and the function of microglia and macrophage during the late stage of ischemia/hypoxia. We investigated the effects of ASK1 in mice subjected to middle cerebral artery occlusion and on BV2 microglia and RAW264.7 macrophage cell lines subjected to oxygen-glucose deprivation. Our results showed that ASK1 silencing effectively reduced Iba-1 or CD11b-positive cells in ischemic areas, suppressed pro-inflammatory cytokines, and increased anti-inflammatory mediator levels at 7 days after cerebral ischemia. In cultured microglia and macrophages, ASK1 inhibition, induced by NQDI-1 drug, decreased the expression and release of M1-associated factors and increased those of M2-associated factors after hypoxia/reperfusion (H/R). At the gene level, ASK1 inhibition suppressed M1-associated genes and augmented M2-associated genes. In gap closure assay, ASK1 inhibition reduced the migration rate of microglia and macrophages after H/R. Taken together, our results provide new information that suggests ASK1 controls the polarization of M1/M2 and the function of microglia and macrophage under sustained-inflammatory conditions. Regulation of persistent inflammation via M1/M2 polarization by ASK1 is a novel strategy for repair after ischemic stroke

    Efficacy and Tolerability of GCSB-5 for Hand Osteoarthritis: A Randomized, Controlled Trial

    Get PDF
    AbstractPurposeThe aim of this study was to investigate the efficacy and tolerability of GCSB-5, a mixture of 6 purified herbal extracts, in treating hand osteoarthritis (OA).MethodsA randomized, double-blind, placebo-controlled trial enrolled 220 patients with hand OA who had baseline a visual analog scale joint pain score of >30 of 100 mm at 3 hospitals between September 2013 and November 2014. After randomization, patients were allocated to receive oral GCSB-5 600 mg or placebo, bid for 12 weeks. The primary end point was the change in the Australian/Canadian OA Hand Index (AUSCAN)-defined pain score at 4 weeks relative to baseline. Secondary end points included the frequency Outcome Measures in Rheumatology–OA Research Society International (OMERACT-OARSI)-defined response at 4, 8, 12, and 16 weeks after randomization.FindingsThe allocated treatment was received by 109 and 106 patients in the GCSB-5 and placebo groups, respectively. At 4 weeks, the median (interquartile range) change in AUSCAN pain score relative to baseline was significantly greater in the GCSB-5 group than in the placebo group (–9.0 [–23.8 to –0.4] vs –2.2 [–16.7 to 6.0]; P = 0.014), with sustained improvement at 8, 12, and 16 weeks (P = 0.039). The GCSB-5 group also had a significantly greater OMERACT-OARSI–defined response rate than did the placebo group at 4 weeks (44.0% vs 30.2%), 8 weeks (51.4% vs 35.9%), 12 weeks (56.9% vs 40.6%), and 16 weeks (50.5% vs 37.7%) (P = 0.0074). The 2 treatments exhibited comparable safety profiles.ImplicationsGCSB-5 was associated with improved symptoms of hand OA, with good tolerability, in these patients. GCSB-5 may be a well-tolerated alternative of, or addition to, the treatment of hand OA. ClinicalTrials.gov identifier: NCT01910116

    Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development

    Full text link
    In cultured meat (CM) products the paramount significance lies in the fundamental attributes like texture and sensory of the processed end product. To cater to the tactile and gustatory preferences of real meat, the product needs to be designed to incorporate its texture and sensory attributes. Presently CM products are mainly grounded products like sausage, nugget, frankfurter, burger patty, surimi, and steak with less sophistication and need to mimic real meat to grapple with the traditional meat market. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering. Scaffolding plays an important role in CM production by aiding cell adhesion, growth, differentiation, and alignment. A wide array of scaffolding technologies has been developed for implementation in the realm of biomedical research. In recent years researchers also focus on edible scaffolding to ease the process of CM. However, it is imperative to implement cutting edge technologies like 3D scaffolds, 3D printing, electrospun nanofibers in order to advance the creation of sustainable and edible scaffolding methods in CM production, with the ultimate goal of replicating the sensory and nutritional attributes to mimic real meat cut. This review discusses recent advances in scaffolding techniques and biomaterials related to structured CM production and required advances to create muscle fiber structures to mimic real meat. Keywords: Cultured meat, Scaffolding, Biomaterials, Edible scaffolding, Electrospinning, 3D bioprinting, real meat

    Cardiovascular outcomes with glucagon-like peptide 1 agonists and sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes: A meta-analysis

    Get PDF
    Background: According to available research, there have been no head-to-head studies comparing the effect of glucagon-like peptide 1 (GLP-1) agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors on cardiovascular outcomes among patients with type 2 diabetes not reaching glycemic goal with metformin. Methods: Relevant studies were identified through electronic searches of PubMed and EMBASE published up to January 15, 2020. Efficacy outcomes of interest included the composite of cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke, its individual components, all-cause death, and hospitalization for heart failure (HF). Safety outcomes included all suggested side effects of both agents previously reported. Results: Eleven studies, including 94,727 patients were used for the analysis. The risk of composite end point was significantly lower in both groups compared to the control group (hazard ratio [HR], 0.88, 95% confidence interval [CI] 0.85–0.92, p < 0.001). The risk of hospitalization for HF was significantly lower in both groups but the magnitude of the effect was more pronounced in the SGLT-2 inhibitors group (HR 0.68, 95% CI 0.60–0.76, p < 0.001) than the GLP-1 agonists group (HR 0.92, 95% CI 0.84–0.99, p = 0.03). Patients treated with GLP-1 agonists discontinued trial medications more frequently compared to conventionally treated patients because of serious side effects. Conclusions: Both GLP-1 agonists and SGLT-2 inhibitors showed comparable cardiovascular outcomes in patients with type 2 diabetes. However, the SGLT-2 inhibitors were associated with more pronounced reduction of hospitalization for HF and lower risk of treatment discontinuation than GLP-1 agonists

    DEL 적혈구에 의한 항-D 동종면역

    Get PDF
    Extremely weak D variants called DEL are serologically detectable only by adsorption-elution techniques. A nucleotide change of exon 9 in RHD gene, RHD (K409K, 1227G>A) allelic variant is present in almost all the DEL individuals of East Asians. No DEL phenotype has yet been shown to induce a primary alloanti-D immunization in East Asia. A 68-yr-old D-negative Korean man was negative for anti-D at admission, and he developed alloanti-D after transfusion of red blood cells (RBC) from 4 apparently D-negative donors. Four donors who typed D-negative by routine serologic test were analyzed by real-time PCR for RHD gene and RHD (K409K). One donor was found to have RHD (K409K), This is the first case in which DEL RBCs with RHD (K409K) induced a primary alloanti-D immunization in Asian population. Because the DEL phenotype can induce an anti-D immunization in D-negative recipients, further discussion is needed whether RhD negative donors should be screened by molecular method and what an efficient genotyping method is for detecting the RHD gene carriers in Korea. (Korean J Lab Med 2009;29:361-5)Polin H, 2009, TRANSFUSION, V49, P676, DOI 10.1111/j.1537-2995.2008.02046.xFlegel WA, 2009, TRANSFUSION, V49, P465, DOI 10.1111/j.1537-2995.2008.01975.xSun CF, 2008, ANN CLIN LAB SCI, V38, P258Richard M, 2007, TRANSFUSION, V47, P852, DOI 10.1111/j.1537-2995.2007.01199.xLuettringhaus TA, 2006, TRANSFUSION, V46, P2128, DOI 10.1111/j.1537-2995.2006.01042.xYasuda H, 2005, TRANSFUSION, V45, P1581, DOI 10.1111/j.1537-2995.2005.00579.xWagner T, 2005, TRANSFUSION, V45, P520Gassner C, 2005, TRANSFUSION, V45, P527Kim JY, 2005, TRANSFUSION, V45, P345WAGNER FF, 2001, BMC GENET, V2, P10Avent ND, 2000, BLOOD, V95, P375Aubin JT, 1997, BRIT J HAEMATOL, V98, P356Okuda H, 1997, J CLIN INVEST, V100, P373Avent ND, 1997, BLOOD, V89, P2568HWANG YS, 1996, KOREAN J BLOOD TRANS, V7, P233DANIELS G, 1995, HUMAN BLOOD GROUPSMAK KH, 1993, TRANSFUSION, V33, P348LINCHU M, 1988, TRANSFUSION, V28, P350

    Association between anti-Porphyromonas gingivalis or anti-α-enolase antibody and severity of periodontitis or rheumatoid arthritis (RA) disease activity in RA

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Periodontitis (PD) has been reported to be associated with rheumatoid arthritis (RA). Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium that is recognized as one of the major pathogenic organisms in PD and is the only bacterium known to express peptidylarginine deiminase (PAD). Antibody against human α-enolase (ENO1) is one of the autoantibodies in RA. ENO1 is a highly conserved protein, and could be a candidate molecule for molecular mimicry between bacterial and human proteins. In the present study, we measured serum antibody against P. gingivalis and human ENO1 in patients with RA and investigated their association with the severity of PD or disease activity of RA. Methods Two hundred, forty-eight patients with RA and 85 age- and sex-matched healthy controls were evaluated by rheumatologic and periodontal examinations. The serum levels of anti-P. gingivalis and anti-ENO1 antibodies were measured by an enzyme-linked immunosorbent assay (ELISA). Results Patients with RA had significantly higher levels of anti-P. gingivalis and anti-ENO1 antibody titers than the controls (p = 0.002 and 0.0001, respectively). Anti-P. gingivalis antibody titers significantly correlated with anti-ENO1 antibody titers in RA patients (r = 0.30, p < 0.0001). There were significant correlations between anti-P. gingivalis antibody titers and the gingival index (GI), probing pocket depth (PPD), bleeding on probing (BOP) and clinical attachment level (CAL) (p = 0.038, 0.004, 0.004 and 0.002, respectively) in RA. Anti-P. gingivalis antibody titers were not correlated with disease activity score 28 (DAS28) or anti-CCP titer. However, anti-ENO1 antibody titers were significantly correlated not only with the periodontal indices, such as PPD, BOP, and CAL (p = 0.013, 0.023 and 0.017, respectively), but also RA clinical characteristics, such as DAS28, anti-CCP titer, and ESR (p = 0.009, 0.015 and 0.001, respectively). Conclusion Anti-P. gingivalis and anti-ENO1 antibody titers were correlated with the severity of PD in RA. Anti-ENO1 antibody titers, but not anti-P. gingivalis antibody titers, were further associated with RA disease activity

    Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart

    Get PDF
    AbstractNeuronal nitric oxide synthase (NOS1 or nNOS) exerts negative inotropic and positive lusitropic effects through Ca2+ handling processes in cardiac myocytes from healthy hearts. However, underlying mechanisms of NOS1 in diseased hearts remain unclear. The present study aims to investigate this question in angiotensin II (Ang II)-induced hypertensive rat hearts (HP). Our results showed that the systolic function of left ventricle (LV) was reduced and diastolic function was unaltered (echocardiographic assessment) in HP compared to those in shams. In isolated LV myocytes, contraction was unchanged but peak [Ca2+]i transient was increased in HP. Concomitantly, relaxation and time constant of [Ca2+]i decay (tau) were faster and the phosphorylated fraction of phospholamban (PLN-Ser16/PLN) was greater. NOS1 protein expression and activity were increased in LV myocyte homogenates from HP. Surprisingly, inhibition of NOS1 did not affect contraction but reduced peak [Ca2+]i transient; prevented faster relaxation without affecting the tau of [Ca2+]i transient or PLN-Ser16/PLN in HP, suggesting myofilament Ca2+ desensitization by NOS1. Indeed, relaxation phase of the sarcomere length–[Ca2+]i relationship of LV myocytes shifted to the right and increased [Ca2+]i for 50% of sarcomere shortening (EC50) in HP. Phosphorylations of cardiac myosin binding protein-C (cMyBP-C282 and cMyBP-C273) were increased and cardiac troponin I (cTnI23/24) was reduced in HP. Importantly, NOS1 or PKG inhibition reduced cMyBP-C273 and cTnI23/24 and reversed myofilament Ca2+ sensitivity. These results reveal that NOS1 is up-regulated in LV myocytes from HP and exerts positive lusitropic effect by modulating myofilament Ca2+ sensitivity through phosphorylation of key regulators in sarcomere

    The ID1-CULLIN3 Axis Regulates Intracellular SHH and WNT Signaling in Glioblastoma Stem Cells

    Get PDF
    SummaryInhibitor of differentiation 1 (ID1) is highly expressed in glioblastoma stem cells (GSCs). However, the regulatory mechanism responsible for its role in GSCs is poorly understood. Here, we report that ID1 activates GSC proliferation, self-renewal, and tumorigenicity by suppressing CULLIN3 ubiquitin ligase. ID1 induces cell proliferation through increase of CYCLIN E, a target molecule of CULLIN3. ID1 overexpression or CULLIN3 knockdown confers GSC features and tumorigenicity to murine Ink4a/Arf-deficient astrocytes. Proteomics analysis revealed that CULLIN3 interacts with GLI2 and DVL2 and induces their degradation via ubiquitination. Consistent with ID1 knockdown or CULLIN3 overexpression in human GSCs, pharmacologically combined control of GLI2 and β-CATENIN effectively diminishes GSC properties. A ID1-high/CULLIN3-low expression signature correlates with a poor patient prognosis, supporting the clinical relevance of this signaling axis. Taken together, a loss of CULLIN3 represents a common signaling node for controlling the activity of intracellular WNT and SHH signaling pathways mediated by ID1
    corecore