2,335 research outputs found
Super-lattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface
Standing wave patterns that arise on the surface of ferrofluids by (single
frequency) parametric forcing with an ac magnetic field are investigated
experimentally. Depending on the frequency and amplitude of the forcing, the
system exhibits various patterns including a superlattice and subharmonic
rhombuses as well as conventional harmonic hexagons and subharmonic squares.
The superlattice arises in a bicritical situation where harmonic and
subharmonic modes collide. The rhombic pattern arises due to the non-monotonic
dispersion relation of a ferrofluid
Perturbative QCD analysis of decays
We study the first observed charmless modes, the
decays, in perturbative QCD formalism. The obtained branching ratios
are larger than
from QCD factorization. The comparison of the predicted magnitudes and phases
of the different helicity amplitudes, and branching ratios with experimental
data can test the power counting rules, the evaluation of annihilation
contributions, and the mechanism of dynamical penguin enhancement in
perturbative QCD, respectively.Comment: 14 pages, 2 tables, brief disscussion on hard sacle added, version to
appear in PR
Canonical quantization of so-called non-Lagrangian systems
We present an approach to the canonical quantization of systems with
equations of motion that are historically called non-Lagrangian equations. Our
viewpoint of this problem is the following: despite the fact that a set of
differential equations cannot be directly identified with a set of
Euler-Lagrange equations, one can reformulate such a set in an equivalent
first-order form which can always be treated as the Euler-Lagrange equations of
a certain action. We construct such an action explicitly. It turns out that in
the general case the hamiltonization and canonical quantization of such an
action are non-trivial problems, since the theory involves time-dependent
constraints. We adopt the general approach of hamiltonization and canonical
quantization for such theories (Gitman, Tyutin, 1990) to the case under
consideration. There exists an ambiguity (not reduced to a total time
derivative) in associating a Lagrange function with a given set of equations.
We present a complete description of this ambiguity. The proposed scheme is
applied to the quantization of a general quadratic theory. In addition, we
consider the quantization of a damped oscillator and of a radiating point-like
charge.Comment: 13 page
ELECTROCHEMICAL AND PHYSICAL PROPERTIES OF ACTINIDES AND LANTHANIDES IN HIGH TEMPERATURE MOLTEN SALTS
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)
Recommended from our members
Elucidating the Role of Prelithiation in Si-based Anodes for Interface Stabilization
Prelithiation as a facile and effective method to compensate the lithium inventory loss in the initial cycle has progressed considerably both on anode and cathode sides. However, much less research has been devoted to the prelithiation effect on the interface stabilization for long-term cycling of Si-based anodes. An in-depth quantitative analysis of the interface that forms during the prelithiation of SiOx is presented here and the results are compared with prelithiaton of Si anodes. Local structure probe combined with detailed electrochemical analysis reveals that a characteristic mosaic interface is formed on both prelithiated SiOx and Si anodes. This mosaic interface containing multiple lithium silicates phases, is fundamentally different from the solid electrolyte interface (SEI) formed without prelithiation. The ideal conductivity and mechanical properties of lithium silicates enable improved cycling stability of both prelithiated anodes. With a higher ratio of lithium silicates due to the oxygen participation, prelithiated SiO1.3 anode improves the initial coulombic efficiency to 94% in full cell and delivers good cycling retention (77%) after 200 cycles. The insights provided in this work can be used to further optimize high Si loading (>70% by weight) based anodes in future high energy density batteries
Lead-Free Perovskite-Inspired Absorbers for Indoor Photovoltaics
With the exponential rise in the market value and number of devices part of the Internet of Things (IoT), the demand for indoor photovoltaics (IPV) to power autonomous devices is predicted to rapidly increase. Lead-free perov skite-inspired materials (PIMs) have recently attracted significant attention in photovoltaics research, due to the similarity of their electronic structure to high-performance lead-halide perovskites, but without the same toxicity limitations. However, the capability of PIMs for indoor light harvesting has not yet been considered. Herein, two exemplar PIMs, BiOI and CsSbClxI-x are examined. It is shown that while their bandgaps are too wide for single-junction solar cells, they are close to the optimum for indoor light harvesting. As a result, while BiOI and CsSbClxI-x devices are only circa %-ecient under -sun illumination, their eciencies increase to –% under indoor illumination. These eciencies are within the range of reported values for hydrogenated amorphous silicon, i.e., the industry standard for IPV. It is demonstrated that such performance levels are already sucient for millimeter-scale PIM devices to power thin-film-transistor circuits. Intensity-dependent and optical loss analyses show that future improvements in eciency are possible. Furthermore, calculations of the optically limited eciency of these and other low-toxicity PIMs reveal their considerable potential for IPV, thus encouraging future eorts for their exploration for powering IoT devic
Antiphospholipid antibodies: Paradigm in transition
OBJECTIVES: This is a critical review of anti-phospholipid antibodies (aPL). Most prior reviews focus on the aPL syndrome (APS), a thrombotic condition often marked by neurological disturbance. We bring to attention recent evidence that aPL may be equally relevant to non-thrombotic autoimmune conditions, notably, multiple sclerosis and ITP. ORGANIZATION: After a brief history, the recent proliferation of aPL target antigens is reviewed. The implication is that many more exist. Theories of aPL in thrombosis are then reviewed, concluding that all have merit but that aPL may have more diverse pathological consequences than now recognized. Next, conflicting results are explained by methodological differences. The lupus anticoagulant (LA) is then discussed. LA is the best predictor of thrombosis, but why this is true is not settled. Finally, aPL in non-thrombotic disorders is reviewed. CONCLUSION: The current paradigm of aPL holds that they are important in thrombosis, but they may have much wider clinical significance, possibly of special interest in neurology
Corrosion and Strength Behaviors in Prestressed Tendon under Various Tensile Stress and Impressed Current Conditions
Corrosion occurs more rapidly under high tensile stress and this leads to several problems like degradation of serviceability and structural performance in PSC (prestressed concrete) structures. In this paper, impressed current method, so-called ICM, was applied to tendons under tensile loadings of 0.0, 20.0, 40.0, and 60.0% of ultimate load. With induction of 20 volts for 24 hours to tendon under tensile stress, loading was induced to failure and the ultimate load was evaluated with varying corrosion behaviors. The changing mechanical behaviors in the same corrosive conditions were evaluated under different initial prestressing levels. With increasing initial prestressing load, corrosion occurred more rapidly and corrosion amount also increased linearly. The ultimate load accordingly decreased with increasing initial prestressing and corrosion amount. The relationships between prestressing levels and corrosion behaviors were quantitatively obtained through regression analysis. The measured current during applied voltage and the related corrosion amounts were also dealt with in this work
- …