4,130 research outputs found
Simple scheme for expanding a polarization-entangled W state by adding one photon
We propose a simple scheme for expanding a polarization-entangled W state. By
mixing a single photon and one of the photons in an n-photon W state at a
polarization-dependent beam splitter (PDBS), we can obtain an (n+1)-photon W
state after post-selection. Our scheme also opens the door for generating
n-photon W states using single photons and linear optics.Comment: 3 pages, 2 figure
Intersite coupling effects in a Kondo lattice
The La dilution of the Kondo lattice CeCoIn_5 is studied. The scaling laws
found for the magnetic susceptibility and the specific heat reveal two
well-separated energy scales, corresponding to the single impurity Kondo
temperature T_K and an intersite spin-liquid temperature T^*. The Ce-dilute
alloy has the expected Fermi liquid ground state, while the specific heat and
resistivity in the dense Kondo regime exhibit non-Fermi-liquid behavior, which
scales with T^*. These observations indicate that the screening of the magnetic
moments in the lattice involves antiferromagnetic intersite correlations with a
larger energy scale in comparison with the Kondo impurity case.Comment: 4 pages, 4 figure
Teleportation of the one-qubit state with environment-disturbed recovery operations
We study standard protocol for teleporting the one-qubit
state with both the transmission process of the two qubits constitute the
quantum channel and the recovery operations performed by Bob disturbed by the
decohering environment. The results revealed that Bob's imperfect operations do
not eliminate the possibility of nonclassical teleportation fidelity provided
he shares an ideal channel state with Alice, while the transmission process is
constrained by a critical time longer than which will result in
failure of if the two qubits are corrupted by the decohering
environment. Moreover, we found that under the condition of the same
decoherence rate , the teleportation protocol is significantly more
fragile when it is executed under the influence of the noisy environment than
those under the influence of the dissipative and dephasing environments.Comment: 8 pages, 4 figure
Liquid-to-liquid phase transition in pancake vortex systems
We study the thermodynamics of a model of pancake vortices in layered
superconductors. The model is based on the effective pair potential for the
pancake vortices derived from the London approximation of a version of the
Lawrence-Doniach model which is valid for extreme type-II superconductors.
Using the hypernetted-chain (HNC) approximation, we find that there is a
temperature below which multiple solutions to the HNC equations exist. By
explicitly evaluating the free energy for each solution we find that the system
undergoes a first-order transition between two vortex liquid phases. The
low-temperature phase has larger correlations along the field direction than
the high-temperature phase. We discuss the possible relation of this phase
transition to the liquid-to-liquid phase transition recently observed in
Y-Ba-Cu-O superconductors in high magnetic fields in the presence of disorder.Comment: 7 pages, 6 figure
Is there a Phase Transition to the Flux Lattice State?
The sharp drops in the resistance and magnetization which are usually
attributed to a phase transition from the vortex liquid state to a crystal
state are explained instead as a crossover between three and two dimensional
behavior, which occurs when the phase coherence length in the liquid becomes
comparable to the sample thickness. Estimates of the width of the crossover
region and the phase coherence length scales are in agreement with experiment.Comment: 4 pages, RevTe
First order transition from correlated electron semiconductor to ferromagnetic metal in single crystalline FeSi1-xGex
The phase diagram of FeSi1-xGex, obtained from magnetic, thermal and
transport measurements on single crystals, shows a first-order transition from
a correlated electron semiconductor to a ferromagnetic metal at a critical
concentration, x ~ 0.25. The gap of the insulating phase strongly decreases
with x. The specific heat coefficient appears to track the density of states of
a Kondo insulator. The phase diagram is consistent with a correlation induced
insulator-metal transition in conjunction with disorder on the Si/Ge ligand
site
Analog IC test and product engineering curriculum for Malaysia microelectronics industry
Production test is a significant driver of semiconductor manufacturing cost. Parallel with the advances of semiconductor fabrication, the need for a pool of talented product and test engineers is significantly increasing. This paper describes the academia-industries collaboration effort in developing an analogue electronic test and product engineering to boost-up technical competencies of electronic engineering graduates particularly in microelectronic major. The program has been successfully conducted at Universiti Putra Malaysia with strong support from Texas Instruments and Teradyne
Flux-lattice melting in two-dimensional disordered superconductors
The flux line lattice melting transition in two-dimensional pure and
disordered superconductors is studied by a Monte Carlo simulation using the
lowest Landau level approximation and quasi-periodic boundary condition on a
plane. The position of the melting line was determined from the diffraction
pattern of the superconducting order parameter. In the clean case we confirmed
the results from earlier studies which show the existence of a quasi-long range
ordered vortex lattice at low temperatures. Adding frozen disorder to the
system the melting transition line is shifted to slightly lower fields. The
correlations of the order parameter for translational long range order of the
vortex positions seem to decay slightly faster than a power law (in agreement
with the theory of Carpentier and Le Doussal) although a simple power law decay
cannot be excluded. The corresponding positional glass correlation function
decays as a power law establishing the existence of a quasi-long range ordered
positional glass formed by the vortices. The correlation function
characterizing a phase coherent vortex glass decays however exponentially
ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.
Recommended from our members
Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations
Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties – from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects
Adsorption of CO on a Platinum (111) surface - a study within a four-component relativistic density functional approach
We report on results of a theoretical study of the adsorption process of a
single carbon oxide molecule on a Platinum (111) surface. A four-component
relativistic density functional method was applied to account for a proper
description of the strong relativistic effects. A limited number of atoms in
the framework of a cluster approach is used to describe the surface. Different
adsorption sites are investigated. We found that CO is preferably adsorbed at
the top position.Comment: 23 Pages with 4 figure
- …