112 research outputs found

    The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain

    Get PDF
    Introduction: Action of the ascending reticular activating system (ARAS) on the cerebral cortex is responsible for achievement of consciousness. In this study, we attempted to reconstruct the lower single component of the ARAS from the reticular formation (RF) to the thalamus in the normal human brain using diffusion tensor imaging (DTI). Methods: Twenty six normal healthy subjects were recruited for this study. A 1.5-T scanner was used for scanning of diffusion tensor images, and the lower single component of the ARAS was reconstructed using FMRIB software. We utilized two ROIs for reconstruction of the lower single component of the ARAS: the seed ROI - the RF of the pons at the level of the trigeminal nerve entry zone, the target ROI - the intralaminar nuclei of the thalamus at the level of the commissural plane. Results: The reconstructed ARAS originated from the pontine RF, ascended through the mesencephalic tegmentum just posterior to the red nucleus, and then terminated on the intralaminar nuclei of the thalamus. No significant differences in fractional anisotropy, mean diffusivity, and tract number were observed between hemispheres (P>0.05) Conclusion: We reconstructed the lower single component of the ARAS from the RF to the thalamus in the human brain using DTI. The results of this study might be of value for the diagnosis and prognosis of patients with impaired consciousness. © 2013 Yeo, Chang and Jang.1

    The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study

    Get PDF
    Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Conclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation. © 2014 Chang, Lee, Gu, Lee, Jin, Yeo, Seo and Jang.1

    Complete Laryngotracheal Separation Following Attempted Hanging

    Get PDF
    Laryngotracheal separation (LTS) is the most immediately life-threatening airway injury. LTS is so rare that very few otolaryngologists have experience with it. LTS is one of the diagnostic and therapeutic challenges in airway diseases and its management remains to be established. We experienced a patient with complete LTS after attempted hanging. A high index of suspicion, adequate imaging, prompt airway establishment and early surgical repair are the most vital factors in managing a patient with LTS

    Phenylalanine ammonia-lyase expression and pyranocoumarin accumulation in Angelica gigas plantlets exposed to light-emitting diodes

    Get PDF
    Angelica gigas (Dang Gui) is an important medicinal plant. In this study, we examined the accumulation of pyranocoumarin (decursin and decursinol angelate) and the expression of phenylalanine ammonia-lyase (PAL) in Korean angelica plantlet grown under different light-emitting diodes (LEDs) (red, orange, green, blue, and white). Three weeks after LED exposure (WAE), the transcript levels of phenylalanine ammonia-lyase mRNA in seedlings grown under orange LEDs were 4-, 18-, and 7-fold higher than those in seedlings grown under green, blue, and white LEDs, respectively. The decursinol angelate content was almost double than the decursin content. The highest levels of decursin (3.2 mg/g dry weight) and decursinol angelate (6 mg/g dry weight) were detected in plants grown under orange LEDs, at 2 WAE. Therefore, we suggest that orange LEDs may affect decursin and decursinol angelate accumulation. The findings of this study could help to determine an effective strategy for producing secondary metabolites in A. gigas using LED technology

    Polygenic risk score validation using Korean genomes of 265 early-onset acute myocardial infarction patients and 636 healthy controls

    Get PDF
    Background The polygenic risk score (PRS) developed for coronary artery disease (CAD) is known to be effective for classifying patients with CAD and predicting subsequent events. However, the PRS was developed mainly based on the analysis of Caucasian genomes and has not been validated for East Asians. We aimed to evaluate the PRS in the genomes of Korean early-onset AMI patients (n = 265, age <= 50 years) following PCI and controls (n = 636) to examine whether the PRS improves risk prediction beyond conventional risk factors. Results The odds ratio of the PRS was 1.83 (95% confidence interval [CI]: 1.69-1.99) for early-onset AMI patients compared with the controls. For the classification of patients, the area under the curve (AUC) for the combined model with the six conventional risk factors (diabetes mellitus, family history of CAD, hypertension, body mass index, hypercholesterolemia, and current smoking) and PRS was 0.92 (95% CI: 0.90-0.94) while that for the six conventional risk factors was 0.91 (95% CI: 0.85-0.93). Although the AUC for PRS alone was 0.65 (95% CI: 0.61-0.69), adding the PRS to the six conventional risk factors significantly improved the accuracy of the prediction model (P = 0.015). Patients with the upper 50% of PRS showed a higher frequency of repeat revascularization (hazard ratio = 2.19, 95% CI: 1.47-3.26) than the others. Conclusions The PRS using 265 early-onset AMI genomes showed improvement in the identification of patients in the Korean population and showed potential for genomic screening in early life to complement conventional risk prediction

    Reversibly controlled ternary polar states and ferroelectric bias promoted by boosting square???tensile???strain

    Get PDF
    Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, we report deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO3, which boosts square-tensile-strain to BaTiO3 and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti3+ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, we experimentally demonstrate that three electrically controlled polar-ordering states lead to switchable and non-volatile dielectric states for application of non-destructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates

    Associations between Age-Related Changes in the Core Vestibular Projection Pathway and Balance Ability: A Diffusion Tensor Imaging Study

    No full text
    Objective. We investigated the changes of the vestibulospinal tract (VST) and parietoinsular vestibular cortex (PIVC) using diffusion tensor imaging (DTI) and relation to balance between old and young healthy adults. Methods. This study recruited eleven old adults (6 males, 5 females; mean age 63.36±4.25 years) and 12 young adults (7 males, 5 females; mean age 28.42±4.40 years). The lateral and medial VST and PIVC were reconstructed using DTI. Fractional anisotropy (FA), mean diffusivity (MD), and tract volume were measured. The six-minute walk test (6-MWT), the timed up and go test (TUG), and the Berg balance scale (BBS) were conducted. Spatiotemporal parameters during tandem gait and values of sway during one-leg standing using the wearable sensors were measured. All parameters between two groups were analyzed by the Mann-Whitney U test and independent t-test. Results. Statistically significant decrease in old adults was detected in the tract volume of lateral (p=0.005) and medial VST (p≤0.001) and PIVC (p=0.020). A significant decrease in FA of lateral VST (p=0.044) and MD of medial VST (p=0.001) was seen in old adults. Stride length (p=0.003) and velocity (p=0.001) during tandem gait in old adults were significantly decreased. 6MWT (p≤0.001) showed significant decrease, while TUG (p≤0.001) showed significant increase in old adults. However, mean BSS (p=0.296) was nonsignificantly different. In eyes-open condition during one-leg standing, all parameters except for reciprocal compensatory index (RCI) values were significantly decreased in old adults. The RCI in the anteroposterior (AP) direction (p≤0.001) was increased in old adults; however, the mediolateral direction (p=0.301) was nonsignificantly different between the two groups. In eye-closed condition, the changes of ankle (p=0.031) and hip (p=0.004) sway and the center of mass in the AP direction (p=0.014) showed to be significantly higher in old adults than in young adults. Conclusion. The results suggested that there was a relationship between DTI parameters in the vestibular neural pathway and balance according to aging
    corecore