6 research outputs found
Integrating the three E’s in wastewater treatment
Water is often the most mispriced and misused component in domestic, industrial and agricultural sectors. The rise in world population and industrialization in developing nations has tremendously increased the demand for water and has resulted in the generation of wastewater which is contaminated with dangerous pollutants and unknown contaminants. Furthermore, if the wastewater is not treated properly the toxic pollutants will leach back into the ground ultimately contaminating the groundwater resources. Thus, wastewater treatment, reuse, and safe disposal have become crucial for sustainable existence. In this review, the different aspects involved in designing efficient and sustainable wastewater treatment systems such as wastewater characterization, stage-wise treatment approach, technology features, modeling methodologies, cost evaluations, and environmental impact assessment are presented and future need for information exchange, interdisciplinary collaborations and convergent research are emphasized
Synthesis and analysis of separation processes for extracellular chemicals generated from microbial conversions
Recent advances in metabolic engineering have enabled the production of chemicals via bio-conversion using microbes. However, downstream separation accounts for 60–80% of the total production cost in many cases. Previous work on microbial production of extracellular chemicals has been mainly restricted to microbiology, biochemistry, metabolomics, or techno-economic analysis for specific product examples such as succinic acid, xanthan gum, lycopene, etc. In these studies, microbial production and separation technologies were selected apriori without considering any competing alternatives. However, technology selection in downstream separation and purification processes can have a major impact on the overall costs, product recovery, and purity. To this end, we apply a superstructure optimization based framework that enables the identification of critical technologies and their associated parameters in the synthesis and analysis of separation processes for extracellular chemicals generated from microbial conversions. We divide extracellular chemicals into three categories based on their physical properties, such as water solubility, physical state, relative density, volatility, etc. We analyze three major extracellular product categories (insoluble light, insoluble heavy and soluble) in detail and provide suggestions for additional product categories through extension of our analysis framework. The proposed analysis and results provide significant insights for technology selection and enable streamlined decision making when faced with any microbial product that is released extracellularly. The parameter variability analysis for the product as well as the associated technologies and comparison with novel alternatives is a key feature which forms the basis for designing better bioseparation strategies that have potential for commercial scalability and can compete with traditional chemical production methods
Strategic Optimization of the Flushing Operations in Lubricant Manufacturing and Packaging Facilities
Commercial lubricant industries use a complex pipeline network for the sequential processing of thousands of unique products annually. Flushing is conducted between changeovers to ensure the integrity of each production batch. An upcoming product is used for cleaning the residues of the previous batch, resulting in the formation of a commingled/mixed oil that does not match the specifications of either of the two batches. The existing operations are based on the operator’s experience and trial and error. After a selected flush time, the samples are tested for their viscosity to determine the success of a flush. The approach results in long downtime, the generation of large commingled oil volumes, and huge economic losses. Hence, to overcome the drawback, our work introduces a solution strategy for systematically optimizing flushing operations and making more informed decisions to improve the resource-management footprint of these industries. We use the American Petroleum Institute-Technical Data Book (API-TDB) blending correlations for calculating the mixture viscosities in real-time. The blending correlations are combined with our first-principles models and validated against well-designed experimental data from the partnered lubricant facility. Next, we formulate an optimal control problem for predicting the optimum flushing times. We solve the problem using two solution techniques viz. Pontryagin’s maximum principle and discrete-time nonlinear programming. The results from both approaches are compared with well-designed experimental data, and the economic and environmental significance are discussed. The results illustrate that with the application of a discrete-time nonlinear programming solution approach, the flushing can be conducted at a customized flow rate, and the necessary flushing volume can be reduced to over 30% as compared to the trial-and-error mode of operation
Systematic Design, Optimization, and Sustainability Assessment for Generation of Efficient Wastewater Treatment Networks
Due to population growth and economic development, there has been an increase in global wastewater (WW) generation footprint. There are different technologies associated with the wastewater treatment (WWT) process. The challenge is to select technologies that minimize the cost of treatment, as well as meet purity requirements. Further, there is a need to integrate sustainability analysis to facilitate a holistic decision. With the application of systems engineering, sustainable and cost-effective solutions can be achieved. In this work, we apply systems engineering to generate a sustainable and cost-effective solution. A superstructure was generated by categorizing technologies into four treatment stages. After modeling all functional equations for each technology, an optimization problem was formulated to determine the best path for the treatment process. Mixed-integer non-linear programming (MINLP), which implements a 0–1 binary integer constraint for active/inactive technologies at each stage was used. Sustainability analysis was performed for each representative case study (municipal and pharmaceutical WWT) using the sustainable process index (SPI). The total cost of municipal WWT is 1.92 USD/m3, while that for the pharmaceutical WWT is 3.44 USD/m3. With the treatment of WW, there is a reduction of over 90% ecological burden based on the SPI metric
Design of solvent-assisted plastics recycling: Integrated economics and environmental impacts analysis
In 2018, the United States generated over 35. 7 million tons of plastic waste, with only 8.4% being recycled and the other 91.6% incinerated or disposed of in a landfill. The continued growth of the polymer market has raised concerns over the end of life of plastics. Currently, the waste management system is faced with issues of inefficient sorting methods and low-efficiency recycling methods when it comes to plastics recycling. Mechanical recycling is the commonest recycling method but presents a lower-valued recycled material due to the material incompatibilities introduced via the inefficient sorting methods. Chemical recycling offers a promising alternative as it potentially allows for plastics to maintain their original properties. To that end, there is the need to investigate feasible chemical recycling methods to help mitigate the challenging problem posed by plastics at the end-of-life stage. This work proposes a conceptual solvent-assisted plastics recycling framework based on a superstructure optimization approach. This framework is evaluated using a representative case study to recover Polyethylene Terephthalate (PET). In this case study, it is found that polymer recovery is both economically and environmentally favorable when compared to traditional methods of disposal such as incineration